499 research outputs found
Functional renormalization group in the broken symmetry phase: momentum dependence and two-parameter scaling of the self-energy
We include spontaneous symmetry breaking into the functional renormalization
group (RG) equations for the irreducible vertices of Ginzburg-Landau theories
by augmenting these equations by a flow equation for the order parameter, which
is determined from the requirement that at each RG step the vertex with one
external leg vanishes identically. Using this strategy, we propose a simple
truncation of the coupled RG flow equations for the vertices in the broken
symmetry phase of the Ising universality class in D dimensions. Our truncation
yields the full momentum dependence of the self-energy Sigma (k) and
interpolates between lowest order perturbation theory at large momenta k and
the critical scaling regime for small k. Close to the critical point, our
method yields the self-energy in the scaling form Sigma (k) = k_c^2 sigma^{-}
(k | xi, k / k_c), where xi is the order parameter correlation length, k_c is
the Ginzburg scale, and sigma^{-} (x, y) is a dimensionless two-parameter
scaling function for the broken symmetry phase which we explicitly calculate
within our truncation.Comment: 9 pages, 4 figures, puplished versio
Native structure-based modeling and simulation of biomolecular systems per mouse click
Background
Molecular dynamics (MD) simulations provide valuable insight into biomolecular systems at the atomic level. Notwithstanding the ever-increasing power of high performance computers current MD simulations face several challenges: the fastest atomic movements require time steps of a few femtoseconds which are small compared to biomolecular relevant timescales of milliseconds or even seconds for large conformational motions. At the same time, scalability to a large number of cores is limited mostly due to long-range interactions. An appealing alternative to atomic-level simulations is coarse-graining the resolution of the system or reducing the complexity of the Hamiltonian to improve sampling while decreasing computational costs. Native structure-based models, also called Gō-type models, are based on energy landscape theory and the principle of minimal frustration. They have been tremendously successful in explaining fundamental questions of, e.g., protein folding, RNA folding or protein function. At the same time, they are computationally sufficiently inexpensive to run complex simulations on smaller computing systems or even commodity hardware. Still, their setup and evaluation is quite complex even though sophisticated software packages support their realization.
Results
Here, we establish an efficient infrastructure for native structure-based models to support the community and enable high-throughput simulations on remote computing resources via GridBeans and UNICORE middleware. This infrastructure organizes the setup of such simulations resulting in increased comparability of simulation results. At the same time, complete workflows for advanced simulation protocols can be established and managed on remote resources by a graphical interface which increases reusability of protocols and additionally lowers the entry barrier into such simulations for, e.g., experimental scientists who want to compare their results against simulations. We demonstrate the power of this approach by illustrating it for protein folding simulations for a range of proteins.
Conclusions
We present software enhancing the entire workflow for native structure-based simulations including exception-handling and evaluations. Extending the capability and improving the accessibility of existing simulation packages the software goes beyond the state of the art in the domain of biomolecular simulations. Thus we expect that it will stimulate more individuals from the community to employ more confidently modeling in their research
Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish
The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord
Non-perturbative renormalization-group approach to zero-temperature Bose systems
We use a non-perturbative renormalization-group technique to study
interacting bosons at zero temperature. Our approach reveals the instability of
the Bogoliubov fixed point when and yields the exact infrared
behavior in all dimensions within a rather simple theoretical framework.
It also enables to compute the low-energy properties in terms of the parameters
of a microscopic model. In one-dimension and for not too strong interactions,
it yields a good picture of the Luttinger-liquid behavior of the superfluid
phase.Comment: v1) 6 pages, 8 figures; v2) added references; v3) corrected typo
Impact of the Affordable Care Act on Colorectal Cancer Screening, Incidence, and Survival in Kentucky
Background
Kentucky ranks first in the US in cancer incidence and mortality. Compounded by high poverty levels and a high rate of medically uninsured, cancer rates are even worse in Appalachian Kentucky. Being one of the first states to adopt the Affordable Care Act (ACA) Medicaid expansion, insurance coverage markedly increased for Kentucky residents. The purpose of our study was to determine the impact of Medicaid expansion on colorectal cancer (CRC) screening, diagnosis, and survival in Kentucky.
Study Design
The Kentucky Cabinet for Health and Family Services and the Kentucky Cancer Registry were queried for individuals (≥20 years) undergoing CRC screening (per US Preventative Services Task-Force) or diagnosed with primary invasive CRC from January 1, 2011 to December 31, 2016. CRC screening rates, incidence, and survival were compared before (2011-2013) and after (2014-2016) ACA implementation.
Results
Colorectal cancer screening was performed in 930,176 individuals, and 11,441 new CRCs were diagnosed from 2011 to 2016. Screening for CRC increased substantially for Medicaid patients after ACA implementation (+230%, p \u3c 0.001), with a higher increase in screening among the Appalachian (+44%) compared with the non-Appalachian (+22%, p \u3c 0.01) population. The incidence of CRC increased after ACA implementation in individuals with Medicaid coverage (+6.7%, p \u3c 0.001). Additionally, the proportion of early stage CRC (stage I/II) increased by 9.3% for Appalachians (p = 0.09), while there was little change for non-Appalachians (−1.5%, p = 0.60). Colorectal cancer survival was improved after ACA implementation (hazard ratio 0.73, p \u3c 0.01), particularly in the Appalachian population with Medicaid coverage.
Conclusions
Implementation of Medicaid expansion led to a significant increase in CRC screening, CRC diagnoses, and overall survival in CRC patients with Medicaid, with an even more profound impact in the Appalachian population
Increased power gains from wake steering control using preview wind direction information
Yaw controllers typically rely on measurements taken at the wind turbine, resulting in a slow reaction to wind direction changes and subsequent power losses due to misalignments. Delayed yaw action is especially problematic in wake steering operation because it can result in power losses when the yaw misalignment angle deviates from the intended one due to a changing wind direction. This study explores the use of preview wind direction information for wake steering control in a two-turbine setup with a wind speed in the partial load range. For these conditions and a simple yaw controller, results from an engineering model identify an optimum preview time of 90 s. These results are validated by forcing wind direction changes in a large-eddy simulation model. For a set of six simulations with large wind direction changes, the average power gain from wake steering increases from only 0.44 % to 1.32 %. For a second set of six simulations with smaller wind direction changes, the average power gain from wake steering increases from 1.24 % to 1.85 %. Low-frequency fluctuations are shown to have a larger impact on the performance of wake steering and the effectiveness of preview control, in particular, than high-frequency fluctuations. From these results, it is concluded that the benefit of preview wind direction control for wake steering is substantial, making it a topic worth pursuing in future work.</p
Infrared behavior of interacting bosons at zero temperature
We review the infrared behavior of interacting bosons at zero temperature.
After a brief discussion of the Bogoliubov approximation and the breakdown of
perturbation theory due to infrared divergences, we present two approaches that
are free of infrared divergences -- Popov's hydrodynamic theory and the
non-perturbative renormalization group -- and allow us to obtain the exact
infrared behavior of the correlation functions. We also point out the
connection between the infrared behavior in the superfluid phase and the
critical behavior at the superfluid--Mott-insulator transition in the
Bose-Hubbard model.Comment: 8 pages, 4 figures. Proceedings of the 19th International Laser
Physics Workshop, LPHYS'10 (Foz do Iguacu, Brazil, July 5-9, 2010
High-density Mapping Guided Pulmonary Vein Isolation for Treatment of Atrial Fibrillation-Two-year clinical outcome of a single center experience
Pulmonary vein isolation (PVI) as interventional treatment for atrial fibrillation (AF) aims to eliminate arrhythmogenic triggers from the PVs. Improved signal detection facilitating a more robust electrical isolation might be associated with a better outcome. This retrospective cohort study compared PVI procedures using a novel high-density mapping system (HDM) with improved signal detection vs. age-and sex-matched PVIs using a conventional 3D mapping system (COM). Endpoints comprised freedom from AF and procedural parameters. In total, 108 patients (mean age 63.9 +/- 11.2 years, 56.5% male, 50.9% paroxysmal AF) were included (n = 54 patients/group). Our analysis revealed that HDM was not superior regarding freedom from AF (mean follow-up of 494.7 +/- 26.2 days), with one- and two-year AF recurrence rates of 38.9%/46.5% (HDM) and 38.9%/42.2% (COM), respectively. HDM was associated with reduction in fluoroscopy times (18.8 +/- 10.6 vs. 29.8 +/- 13.4 min;p < 0.01) and total radiation dose (866.0 +/- 1003.3 vs. 1731.2 +/- 1978.4 cGy;p < 0.01) compared to the COM group. HDM was equivalent but not superior to COM with respect to clinical outcome after PVI and resulted in reduced fluoroscopy time and radiation exposure. These results suggest that HDM-guided PVI is effective and safe for AF ablation. Potential benefits in comparison to conventional mapping systems, e.g. arrhythmia recurrence rates, have to be addressed in randomized trials
Modeling of Wnt-mediated tissue patterning in vertebrate embryogenesis
This is the final version. Available on open access from Public Library of Science via the DOI in this recordData Availability: All relevant data are within the manuscript and its Supporting Information files.During embryogenesis, morphogens form a concentration gradient in responsive tissue, which is then translated into a spatial cellular pattern. The mechanisms by which morphogens spread through a tissue to establish such a morphogenetic field remain elusive. Here, we investigate by mutually complementary simulations and in vivo experiments how Wnt morphogen transport by cytonemes differs from typically assumed diffusion-based transport for patterning of highly dynamic tissue such as the neural plate in zebrafish. Stochasticity strongly influences fate acquisition at the single cell level and results in fluctuating boundaries between pattern regions. Stable patterning can be achieved by sorting through concentration dependent cell migration and apoptosis, independent of the morphogen transport mechanism. We show that Wnt transport by cytonemes achieves distinct Wnt thresholds for the brain primordia earlier compared with diffusion-based transport. We conclude that a cytoneme-mediated morphogen transport together with directed cell sorting is a potentially favored mechanism to establish morphogen gradients in rapidly expanding developmental systems.Biotechnology & Biological Sciences Research Council (BBSRC)Wellcome TrustChinese Scholarship Council (CSC)Medical Research Council (MRC
Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish
This is the final version. Available on open access from Springer via the DOI in this recordThe notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord
- …