4,045 research outputs found
Multi-Thread Hydrodynamic Modeling of a Solar Flare
Past hydrodynamic simulations have been able to reproduce the high
temperatures and densities characteristic of solar flares. These simulations,
however, have not been able to account for the slow decay of the observed flare
emission or the absence of blueshifts in high spectral resolution line
profiles. Recent work has suggested that modeling a flare as an sequence of
independently heated threads instead of as a single loop may resolve the
discrepancies between the simulations and observations. In this paper we
present a method for computing multi-thread, time-dependent hydrodynamic
simulations of solar flares and apply it to observations of the Masuda flare of
1992 January 13. We show that it is possible to reproduce the temporal
evolution of high temperature thermal flare plasma observed with the
instruments on the \textit{GOES} and \textit{Yohkoh} satellites. The results
from these simulations suggest that the heating time-scale for a individual
thread is on the order of 200 s. Significantly shorter heating time scales (20
s) lead to very high temperatures and are inconsistent with the emission
observed by \textit{Yohkoh}.Comment: Submitted to Ap
Design and simulations of the cavity BPM readout electronics for the ELI-NP gamma beam system
Helium Recovery in the LHC Cryogenic System following Magnet Resistive Transitions
A resistive transition (quench) of the Large Hadron Collider magnets provokes the expulsion of helium from the magnet cryostats to the helium recovery system. A high-volume, vacuum-insulated recovery line connected to several uninsulated medium-pressure gas storage tanks, forms the main constituents of the system. Besides a dedicated hardware configuration, helium recovery also implies specific procedures that should follow a quench, in order to conserve the discharged helium and possibly make use of its refrigeration capability. The amount of energy transferred after a quench from the magnets to the helium leaving the cold mass has been estimated on the basis of experimental data. Based on these data, the helium thermodynamic state in the recovery system is calculated using a lumped parameter approach. The LHC magnet quenches are classified ina parametric way from their cryogenic consequences and procedures that should follow the quench are proposed
Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates
The presence of oligomeric aggregates, which is often observed during the
process of amyloid formation, has recently attracted much attention since it
has been associated with neurodegenerative conditions such as Alzheimer's and
Parkinson's diseases. We provide a description of a sequence-indepedent
mechanism by which polypeptide chains aggregate by forming metastable
oligomeric intermediate states prior to converting into fibrillar structures.
Our results illustrate how the formation of ordered arrays of hydrogen bonds
drives the formation of beta-sheets within the disordered oligomeric aggregates
that form early under the effect of hydrophobic forces. Initially individual
beta-sheets form with random orientations, which subsequently tend to align
into protofilaments as their lengths increases. Our results suggest that
amyloid aggregation represents an example of the Ostwald step rule of first
order phase transitions by showing that ordered cross-beta structures emerge
preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure
Cryogenic operation and testing of the extended LHC prototype magnet string
After the assembly, commissioning and successful first operation of a full-scale superconducting magnet string, and as a new prototype dipole magnet was added to approach final configuration, the cryogenic system has been slightly modified to allow the verification of the performance of the superfluid helium cooling loop in counter-current two-phase flow. At the same time the control system strategies have been updated and only two quench relief valves have been installed, one at each end of the string. We report on the cryogenic operation of the extended version of the string and the response of the system to transients
Simultaneous X-ray spectroscopy of YY Gem with Chandra and XMM-Newton
We report on a detailed study of the X-ray spectrum of the nearby eclipsing
spectroscopic binary YY Gem. Observations were obtained simultaneously with
both large X-ray observatories, XMM-Newton and Chandra. We compare the
high-resolution spectra acquired with the Reflection Grating Spectrometer
onboard XMM-Newton and with the Low Energy Transmission Grating Spectrometer
onboard Chandra, and evidence in direct comparison the good performance of both
instruments in terms of wavelength and flux calibration. The strongest lines in
the X-ray spectrum of YY Gem are from oxygen. Oxygen line ratios indicate the
presence of a low-temperature component (1-4 MK) with density n_e < 2 10^{10}
cm^-3. The X-ray lightcurve reveals two flares and a dip corresponding to the
secondary eclipse. An increase of the density during phases of high activity is
suggested from time-resolved spectroscopy. Time-resolved global fitting of the
European Photon Imaging Camera CCD spectrum traces the evolution of temperature
and emission measure during the flares. These medium-resolution spectra show
that temperatures > 10^7 K are relevant in the corona of YY Gem although not as
dominant as the lower temperatures represented by the strongest lines in the
high-resolution spectrum. Magnetic loops with length on the order of 10^9 cm,
i.e., about 5 % of the radius of each star, are inferred from a comparison with
a one-dimensional hydrodynamic model. This suggests that the flares did not
erupt in the (presumably more extended) inter-binary magnetosphere but are
related to one of the components of the binary.Comment: 15 pages, accepted for publication in A&
Bright X-ray flares in Orion young stars from COUP: evidence for star-disk magnetic fields?
We have analyzed a number of intense X-ray flares observed in the Chandra
Orion Ultradeep Project (COUP), a 13 days observation of the Orion Nebula
Cluster (ONC). Analysis of the flare decay allows to determine the size, peak
density and magnetic field of the flaring structure. A total of 32 events (the
most powerful 1% of COUP flares), have sufficient statistics for the analysis.
A broad range of decay times (from 10 to 400 ks) are present in the sample.
Peak flare temperatures are often very high, with half of the flares in the
sample showing temperatures in excess of 100 MK. Significant sustained heating
is present in the majority of the flares. The magnetic structures which are
found, are in a number of cases very long, with semi-lengths up to 10^12 cm,
implying the presence of magnetic fields of hundreds of G extending to
comparable distance from the stellar photosphere. These very large sizes for
the flaring structures ($ >> R_*) are not found in more evolved stars, where,
almost invariably, the same type of analysis results in structures with L <=
R_*. As the majority of young stars in the ONC are surrounded by disks, we
speculate that the large magnetic structures which confine the flaring plasma
are actually the same type of structures which channel the plasma in the
magnetospheric accretion paradigm, connecting the star's photosphere with the
accretion disk.Comment: Accepted to ApJS, COUP special issu
X-ray flares in Orion young stars. I. Flare characteristics
Pre-main sequence (PMS) stars are known to produce powerful X-ray flares
which resemble magnetic reconnection solar flares scaled by factors up to 10^4.
However, numerous puzzles are present including the structure of X-ray emitting
coronae and magnetospheres, effects of protoplanetary disks, and effects of
stellar rotation. To investigate these issues in detail, we examine 216 of the
brightest flares from 161 PMS stars observed in the Chandra Orion Ultradeep
Project (COUP). These constitute the largest homogeneous dataset of PMS, or
indeed stellar flares at any stellar age, ever acquired. Our effort is based on
a new flare spectral analysis technique that avoids nonlinear parametric
modeling. It can be applied to much weaker flares and is more sensitive than
standard methods. We provide a catalog with >30 derived flare properties and an
electronic atlas for this unique collection of stellar X-ray flares. The
current study (Paper I) examines the flare morphologies, and provides general
comparison of COUP flare characteristics with those of other active X-ray stars
and the Sun. Paper II will concentrate on relationships between flare behavior,
protoplanetary disks, and other stellar properties. Several results are
obtained. First, the COUP flares studied here are among the most powerful,
longest, and hottest stellar X-ray flares ever studied. Second, no significant
statistical differences in peak flare luminosity or temperature distributions
are found among different morphological flare classes, suggesting a common
underlying mechanism for all flares. Third, comparison with the general
solar-scaling laws indicates that COUP flares may not fit adequately proposed
power-temperature and duration-temperature solar-stellar fits. Fourth, COUP
super-hot flares are found to be brighter but shorter than ... ABRIDGEDComment: Accepted for publication in ApJ (07/11/08); 63 pages, 16 figures, 4
table
First Powering of the LHC Test String 2
String 2 is a full-size model of a regular cell in an LHC arc. In the first phase, three dipole magnets and two quadrupole magnets have been assembled in String 2 and commissioning started in April 2001. By the beginning of 2002 three pre-series dipole magnets will be added to complete the cell. As for its predecessor String 1, the facility was built to individually validate the LHC systems and to investigate their collective behaviour for normal operation with the magnets at a temperature of 1.9 K, during transients as well as during exceptional conditions. String 2 is a precious milestone before installation and commissioning of the first LHC sector (1/8 of the machine) in 2004, with respect to infrastructure, installation, tooling and assembly procedures, testing and commissioning of individual systems, as well as the global commissioning of the technical systems. This paper describes the commissioning, and retraces the first powering history
Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance
The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility
instrument mounted on the Gemini South telescope, delivers a uniform, near
diffraction limited images at near infrared wavelengths (0.95 microns- 2.5
microns) over a field of view of 120 arc seconds. GeMS is the first sodium
layer based multi laser guide star adaptive optics system used in astronomy. It
uses five laser guide stars distributed on a 60 arc seconds square
constellation to measure for atmospheric distortions and two deformable mirrors
to compensate for it. In this paper, the second devoted to describe the GeMS
project, we present the commissioning, overall performance and operational
scheme of GeMS. Performance of each sub-system is derived from the
commissioning results. The typical image quality, expressed in full with half
maximum, Strehl ratios and variations over the field delivered by the system
are then described. A discussion of the main contributor to performance
limitation is carried-out. Finally, overheads and future system upgrades are
described.Comment: 20 pages, 11 figures, accepted for publication in MNRA
- …
