374 research outputs found
Neuroactive steroids in depression and anxiety disorders: Clinical studies
Certain neuroactive steroids modulate ligand-gated ion channels via non-genomic mechanisms. Especially 3 alpha-reduced pregnane steroids are potent positive allosteric modulators of the gamma-aminobutyric acid type A (GABA(A)) receptor. During major depression, there is a disequilibrium of 3 alpha-reduced neuroactive steroids, which is corrected by clinically effective pharmacological treatment. To investigate whether these alterations are a general principle of successful antidepressant treatment, we studied the impact of nonpharmacological treatment options on neuroactive steroid concentrations during major depression. Neither partial sleep deprivation, transcranial magnetic stimulation, nor electroconvulsive therapy affected neuroactive steroid levels irrespectively of the response to these treatments. These studies suggest that the changes in neuroactive steroid concentrations observed after antidepressant pharmacotherapy more likely reflect distinct pharmacological properties of antidepressants rather than the clinical response. In patients with panic disorder, changes in neuroactive steroid composition have been observed opposite to those seen in depression. However, during experimentally induced panic induction either with cholecystokinine-tetrapeptide or sodium lactate, there was a pronounced decline in the concentrations of 3 alpha-reduced neuroactive steroids in patients with panic disorder, which might result in a decreased GABAergic tone. In contrast, no changes in neuroactive steroid concentrations could be observed in healthy controls with the exception of 3 alpha,5 alpha-tetrahydrodeoxycorticosterone. The modulation of GABA(A) receptors by neuroactive steroids might contribute to the pathophysiology of depression and anxiety disorders and might offer new targets for the development of novel anxiolytic compounds. Copyright (c) 2006 S. Karger AG, Basel
The impact of point mutations in the human androgen receptor : classification of mutations on the basis of transcriptional activity
Peer reviewedPublisher PD
The Rewiring of Ubiquitination Targets in a Pathogenic Yeast Promotes Metabolic Flexibility, Host Colonization and Virulence
Funding: This work was funded by the European Research Council [http://erc.europa.eu/], AJPB (STRIFE Advanced Grant; C-2009-AdG-249793). The work was also supported by: the Wellcome Trust [www.wellcome.ac.uk], AJPB (080088, 097377); the UK Biotechnology and Biological Research Council [www.bbsrc.ac.uk], AJPB (BB/F00513X/1, BB/K017365/1); the CNPq-Brazil [http://cnpq.br], GMA (Science without Borders fellowship 202976/2014-9); and the National Centre for the Replacement, Refinement and Reduction of Animals in Research [www.nc3rs.org.uk], DMM (NC/K000306/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments We thank Dr. Elizabeth Johnson (Mycology Reference Laboratory, Bristol) for providing strains, and the Aberdeen Proteomics facility for the biotyping of S. cerevisiae clinical isolates, and to Euroscarf for providing S. cerevisiae strains and plasmids. We are grateful to our Microscopy Facility in the Institute of Medical Sciences for their expert help with the electron microscopy, and to our friends in the Aberdeen Fungal Group for insightful discussions.Peer reviewedPublisher PD
Loss of paraplegin drives spasticity rather than ataxia in a cohort of 241 patients with SPG7
Objective : We took advantage of a large multinational recruitment to delineate genotype-phenotype correlations in a large, trans-European multicenter cohort of patients with spastic paraplegia gene 7 (SPG7).
Methods : We analyzed clinical and genetic data from 241 patients with SPG7, integrating neurologic follow-up data. One case was examined neuropathologically.
Results : Patients with SPG7 had a mean age of 35.5 +/- 14.3 years (n = 233) at onset and presented with spasticity (n = 89), ataxia (n = 74), or both (n = 45). At the first visit, patients with a longer disease duration (> 20 years, n = 62) showed more cerebellar dysarthria (p < 0.05), deep sensory loss (p < 0.01), muscle wasting (p < 0.01), ophthalmoplegia (p < 0.05), and sphincter dysfunction (p < 0.05) than those with a shorter duration (< 10 years, n = 93). Progression, measured by Scale for the Assessment and Rating of Ataxia evaluations, showed a mean annual increase of 1.0 +/- 1.4 points in a subgroup of 30 patients. Patients homozygous for loss of function (LOF) variants (n = 65) presented significantly more often with pyramidal signs (p < 0.05), diminished visual acuity due to optic atrophy (p < 0.0001), and deep sensory loss (p < 0.0001) than those with at least 1 missense variant (n = 176). Patients with at least 1 Ala510Val variant (58%) were older (age 37.6 +/- 13.7 vs 32.8 +/- 14.6 years, p < 0.05) and showed ataxia at onset (p < 0.05). Neuropathologic examination revealed reduction of the pyramidal tract in the medulla oblongata and moderate loss of Purkinje cells and substantia nigra neurons.
Conclusions : This is the largest SPG7 cohort study to date and shows a spasticity-predominant phenotype of LOF variants and more frequent cerebellar ataxia and later onset in patients carrying at least 1 Ala510Val variant
Effects of selective serotonin reuptake inhibitor treatment on plasma oxytocin and cortisol in major depressive disorder
Background: Oxytocin is known for its capacity to facilitate social bonding, reduce anxiety and for its actions on the stress hypothalamopituitary adrenal (HPA) axis. Since oxytocin can physiologically suppress activity of the HPA axis, clinical applications of this neuropeptide have been proposed in conditions where the function of the HPA axis is dysregulated. One such condition is major depressive disorder (MDD). Dysregulation of the HPA system is the most prominent endocrine change seen with MDD, and normalizing the HPA axis is one of the major targets of recent treatments. The potential clinical application of oxytocin in MDD requires improved understanding of its relationship to the symptoms and underlying pathophysiology of MDD. Previous research has investigated potential correlations between oxytocin and symptoms of MDD, including a link between oxytocin and treatment related symptom reduction. The outcomes of studies investigating whether antidepressive treatment (pharmacological and non-pharmacological) influences oxytocin concentrations in MDD, have produced conflicting outcomes. These outcomes suggest the need for an investigation of the influence of a single treatment class on oxytocin concentrations, to determine whether there is a relationship between oxytocin, the HPA axis (e.g., oxytocin and cortisol) and MDD. Our objective was to measure oxytocin and cortisol in patients with MDD before and following treatment with selective serotonin reuptake inhibitors, SSRI. Method: We sampled blood from arterial plasma. Patients with MDD were studied at the same time twice; pre- and post- 12 weeks treatment, in an unblinded sequential design (clinicaltrials.govNCT00168493). Results: Results did not reveal differences in oxytocin or cortisol concentrations before relative to following SSRI treatment, and there were no significant relationships between oxytocin and cortisol, or these two physiological variables and psychological symptom scores, before or after treatment. Conclusions: These outcomes demonstrate that symptoms of MDD were reduced following effective treatment with an SSRI, and further, stress physiology was unlikely to be a key factor in this outcome. Further research is required to discriminate potential differences in underlying stress physiology for individuals with MDD who respond to antidepressant treatment, relative to those who experience treatment resistance.Charlotte Keating, Tye Dawood, David A Barton, Gavin W Lambert and Alan J Tilbroo
The Cellular Phenotype of Roberts Syndrome Fibroblasts as Revealed by Ectopic Expression of ESCO2
Cohesion between sister chromatids is essential for faithful chromosome segregation. In budding yeast, the acetyltransferase Eco1/Ctf7 establishes cohesion during DNA replication in S phase and in response to DNA double strand breaks in G2/M phase. In humans two Eco1 orthologs exist: ESCO1 and ESCO2. Both proteins are required for proper sister chromatid cohesion, but their exact function is unclear at present. Since ESCO2 has been identified as the gene defective in the rare autosomal recessive cohesinopathy Roberts syndrome (RBS), cells from RBS patients can be used to elucidate the role of ESCO2. We investigated for the first time RBS cells in comparison to isogenic controls that stably express V5- or GFP-tagged ESCO2. We show that the sister chromatid cohesion defect in the transfected cell lines is rescued and suggest that ESCO2 is regulated by proteasomal degradation in a cell cycle-dependent manner. In comparison to the corrected cells RBS cells were hypersensitive to the DNA-damaging agents mitomycin C, camptothecin and etoposide, while no particular sensitivity to UV, ionizing radiation, hydroxyurea or aphidicolin was found. The cohesion defect of RBS cells and their hypersensitivity to DNA-damaging agents were not corrected by a patient-derived ESCO2 acetyltransferase mutant (W539G), indicating that the acetyltransferase activity of ESCO2 is essential for its function. In contrast to a previous study on cells from patients with Cornelia de Lange syndrome, another cohesinopathy, RBS cells failed to exhibit excessive chromosome aberrations after irradiation in G2 phase of the cell cycle. Our results point at an S phase-specific role for ESCO2 in the maintenance of genome stability
Dynamic regulation of glucocorticoid signalling in health and disease
Activation of the glucocorticoid receptor (GR) by endogenous and synthetic glucocorticoids regulates hundreds of genes to control regulatory networks in development, metabolism, cognition and inflammation. Elucidation of the mechanisms that regulate glucocorticoid action has highlighted the dynamic nature of hormone signalling and provides novel insights into genomic glucocorticoid actions. The major factors that regulate GR function include chromatin structure, epigenetics, genetic variation and the pattern of glucocorticoid hormone secretion. We review our current understanding of the mechanisms that contribute to GR signalling and how these contribute to glucocorticoid sensitivity, resistance and side effects
A Zebrafish Model of Roberts Syndrome Reveals That Esco2 Depletion Interferes with Development by Disrupting the Cell Cycle
The human developmental diseases Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS) are both caused by mutations in proteins responsible for sister chromatid cohesion. Cohesion is mediated by a multi-subunit complex called cohesin, which is loaded onto chromosomes by NIPBL. Once on chromosomes, cohesin binding is stabilized in S phase upon acetylation by ESCO2. CdLS is caused by heterozygous mutations in NIPBL or cohesin subunits SMC1A and SMC3, and RBS is caused by homozygous mutations in ESCO2. The genetic cause of both CdLS and RBS reside within the chromosome cohesion apparatus, and therefore they are collectively known as “cohesinopathies”. However, the two syndromes have distinct phenotypes, with differences not explained by their shared ontology. In this study, we have used the zebrafish model to distinguish between developmental pathways downstream of cohesin itself, or its acetylase ESCO2. Esco2 depleted zebrafish embryos exhibit features that resemble RBS, including mitotic defects, craniofacial abnormalities and limb truncations. A microarray analysis of Esco2-depleted embryos revealed that different subsets of genes are regulated downstream of Esco2 when compared with cohesin subunit Rad21. Genes downstream of Rad21 showed significant enrichment for transcriptional regulators, while Esco2-regulated genes were more likely to be involved the cell cycle or apoptosis. RNA in situ hybridization showed that runx1, which is spatiotemporally regulated by cohesin, is expressed normally in Esco2-depleted embryos. Furthermore, myca, which is downregulated in rad21 mutants, is upregulated in Esco2-depleted embryos. High levels of cell death contributed to the morphology of Esco2-depleted embryos without affecting specific developmental pathways. We propose that cell proliferation defects and apoptosis could be the primary cause of the features of RBS. Our results show that mutations in different elements of the cohesion apparatus have distinct developmental outcomes, and provide insight into why CdLS and RBS are distinct diseases
Escitalopram and Neuroendocrine Response in Healthy First-Degree Relatives to Depressed Patients – A Randomized Placebo-Controlled Trial
INTRODUCTION: The mechanisms by which selective serotonin re-uptake inhibitors (SSRI) act in depressed patients remain unknown. The serotonergic neurotransmitter system and the hypothalamic-pituitary-adrenal (HPA) system may interact. The aim of the AGENDA trial was to investigate whether long-term intervention with SSRI versus placebo affects the cortisol response in the dexamethasone corticotropin-releasing hormone (DEX-CRH) test in healthy first-degree relatives to patients with major depressive disorder (MDD). METHODS: Eighty healthy first-degree relatives to patients with MDD were randomized to escitalopram 10 mg versus matching placebo daily for four weeks. The primary outcome measure was the intervention difference in the change of the total area under the curve (CorAUC(total)) for plasma cortisol in the DEX-CRH test at entry to after four weeks of intervention. RESULTS: Change in CorAUC(total) showed no statistically significant difference between the escitalopram and the placebo group, p = 0.47. There were large intra- and inter-individual differences in the results of the DEX-CRH test. There was statistically significant negative correlation between the plasma escitalopram concentration and change in CorAUC(total), rho = -0.41, p = 0.01. Post-hoc analyses showed a statistically significant interaction between age and intervention group and change in log CorAUC(total). CONCLUSION: The present trial does not support an effect of escitalopram 10 mg daily compared with placebo on the HPA-axis in healthy first-degree relatives to patients with MDD. Increasing levels of escitalopram tended to decrease the HPA-response in the DEX-CRH test and this effect increased with age. TRIAL REGISTRATION: ClinicalTrials.gov NCT00386841
- …
