493 research outputs found

    The evolutionary state of the southern dense core Cha-MMS1

    Get PDF
    Aims: Our goal is to set constraints on the evolutionary state of the dense core Cha-MMS1 in the Chamaeleon I molecular cloud. Methods: We analyze molecular line observations carried out with the new submillimeter telescope APEX. We look for outflow signatures around the dense core and probe its chemical structure, which we compare to predictions of models of gas-phase chemistry. We also use the public database of the Spitzer Space Telescope (SST) to compare Cha-MMS1 with the two Class 0 protostars IRAM 04191 and L1521F, which are at the same distance. Results: We measure a large deuterium fractionation for N2H+ (11 +/- 3 %), intermediate between the prestellar core L1544 and the very young Class 0 protostar L1521F. It is larger than for HCO+ (2.5 +/- 0.9 %), which is probably the result of depletion removing HCO+ from the high-density inner region. Our CO(3-2) map reveals the presence of a bipolar outflow driven by the Class I protostar Ced 110 IRS 4 but we do not find evidence for an outflow powered by Cha-MMS1. We also report the detection of Cha-MMS1 at 24, 70 and 160 microns by the instrument MIPS of the SST, at a level nearly an order of magnitude lower than IRAM 04191 and L1521F. Conclusions: Cha-MMS1 appears to have already formed a compact object, either the first hydrostatic core at the very end of the prestellar phase, or an extremely young protostar that has not yet powered any outflow, at the very beginning of the Class 0 accretion phase.Comment: Accepted by Astronomy & Astrophysics as a letter, to appear in the special issue on the APEX first result

    CO and CH3OH observations of the BHR71 outflows with APEX

    Get PDF
    Context : Highly-collimated outflows are believed to be the earliest stage in outflow evolution, so their study is essential for understanding the processes driving outflows. The BHR71 Bok globule is known to harbour such a highly-collimated outflow, which is powered by a protostar belonging to a protobinary system. Aims : We aimed at investigating the interaction of collimated outflows with the ambient molecular cloud by using molecular tracers. Methods : We mapped the BHR71 highly-collimated outflow in CO(3-2) with the APEX telescope, and observed several bright points of the outflow in the molecular transitions CO(4-3), 13CO(3-2), C18O(3-2), and CH3OH(7-6). We use an LVG code to characterise the temperature enhancements in these regions. Results : In our CO(3-2) map, the second outflow driven by IRS2, which is the second source of the binary system, is completely revealed and shown to be bipolar. We also measure temperature enhancements in the lobes. The CO and methanol LVG modelling points to temperatures between 30 and 50K in the IRS1 outflow, while the IRS2 outflow seems to be warmer (up to 300K).Comment: 4 pages, 5 Figures, accepted by A&A Letters, to appear in the APEX First results special issu

    H2CO and CH3OH maps of the Orion Bar photodissociation region

    Get PDF
    A previous analysis of methanol and formaldehyde towards the Orion Bar concluded that the two molecular species may trace different physical components, methanol the clumpy material, and formaldehyde the interclump medium. To verify this hypothesis, we performed multi-line mapping observations of the two molecules to study their spatial distributions. The observations were performed with the IRAM-30m telescope at 218 and 241 GHz, with an angular resolution of ~11''. Additional data for H2CO from the Plateau de Bure array are also discussed. The data were analysed using an LVG approach. Both molecules are detected in our single-dish data. Our data show that CH3OH peaks towards the clumps of the Bar, but its intensity decreases below the detection threshold in the interclump material. When averaging over a large region of the interclump medium, the strongest CH3OH line is detected with a peak intensity of ~0.06K. Formaldehyde also peaks on the clumps, but it is also detected in the interclump gas. We verified that the weak intensity of CH3OH in the interclump medium is not caused by the different excitation conditions of the interclump material, but reflects a decrease in the column density of methanol. The abundance of CH3OH relative to H2CO decreases by at least one order of magnitude from the dense clumps to the interclump medium.Comment: 11 pages, accepted for publication in A&

    Hydrogen Isocyanide in Comet 73P/Schwassmann-Wachmann (Fragment B)

    Get PDF
    We present a sensitive 3-sigma upper limit of 1.1% for the HNC/HCN abundance ratio in comet 73P/Schwassmann-Wachmann (Fragment B), obtained on May 10-11, 2006 using Caltech Submillimeter Observatory (CSO). This limit is a factor of ~7 lower than the values measured previously in moderately active comets at 1 AU from the Sun. Comet 73P/Schwassmann-Wachmann was depleted in most volatile species, except of HCN. The low HNC/HCN ratio thus argues against HNC production from polymers produced from HCN. However, thermal degradation of macromolecules, or polymers, produced from ammonia and carbon compounds, such as acetylene, methane, or ethane appears a plausible explanation for the observed variations of the HNC/HCN ratio in moderately active comets, including the very low ratio in comet 73P/Schwassmann-Wachmann reported here. Similar polymers have been invoked previously to explain anomalous 14N/15N ratios measured in cometary CN.Comment: 6 pages, 5 figures, 2 table

    Deuterium chemistry in the Orion Bar PDR - "warm" chemistry starring CH2D+

    Get PDF
    High levels of deuterium fractionation in gas-phase molecules are usually associated with cold regions, such as prestellar cores. Significant fractionation ratios are also observed in hot environments such as hot cores or hot corinos, where they are believed to be produced by the evaporation of the icy mantles surrounding dust grains, and thus are remnants of a previous cold (either gas-phase or grain surface) chemistry. The recent detection of DCN towards the Orion Bar, in a clump at a characteristic temperature of 70K, has shown that high deuterium fractionation can also be detected in PDRs. The Orion Bar clumps thus appear as a good environment for the observational study of deuterium fractionation in luke-warm gas, allowing to validate chemistry models in a different temperature range, where dominating fractionation processes are predicted to be different than in cold gas (< 20K). We aimed at studying observationally in detail the chemistry at work in the Orion Bar PDR, to understand if DCN is produced by ice mantle evaporation, or is the result of warm gas-phase chemistry, involving the CH2D+ precursor ion (which survives higher temperatures than the usual H2D+ precursor). Using the APEX and the IRAM 30m telescopes, we targetted selected deuterated species towards two clumps in the Orion Bar. We confirmed the detection of DCN and detected two new deuterated molecules (DCO+ and HDCO) towards one clump in the Orion Bar PDR. Significant deuterium fractionations are found for HCN and H2CO, but a low fractionation in HCO+. We also give upper limits for other molecules relevant for the deuterium chemistry. (...) We show evidence that warm deuterium chemistry driven by CH2D+ is at work in the clumps.Comment: 14 pages, accepted for publication in A&

    Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope

    Full text link
    We have observed five sulphur-bearing molecules in foreground diffuse molecular clouds lying along the sight-lines to five bright continuum sources. We have used the GREAT instrument on SOFIA to observe the 1383 GHz 2Π3/2J=5/2−3/2^2\Pi_{3/2} J=5/2-3/2 transitions of SH towards the star-forming regions W31C, G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards all five sources; and the EMIR receivers on the IRAM 30m telescope at Pico Veleta to detect the H2_2S 1(10)-1(01), CS J=2-1 and SO 3(2)-2(1) transitions. In nine foreground absorption components detected towards these sources, the inferred column densities of the four detected molecules showed relatively constant ratios, with N(SH)/N(H2_2S) in the range 1.1 - 3.0, N(CS)/N(H2_2S) in the range 0.32 - 0.61, and N(SO)/N(H2_2S) in the range 0.08 - 0.30. The observed SH/H2_2 ratios - in the range (0.5-2.6) ×10−8\times 10^{-8} - indicate that SH (and other sulphur-bearing molecules) account for << 1% of the gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules, however, greatly exceed those predicted by standard models of cold diffuse molecular clouds, providing further evidence for the enhancement of endothermic reaction rates by elevated temperatures or ion-neutral drift. We have considered the observed abundance ratios in the context of shock and turbulent dissipation region (TDR) models. Using the TDR model, we find that the turbulent energy available at large scale in the diffuse ISM is sufficient to explain the observed column densities of SH and CS. Standard shock and TDR models, however, fail to reproduce the column densities of H2_2S and SO by a factor of about 10; more elaborate shock models - in which account is taken of the velocity drift, relative to H2_2, of SH molecules produced by the dissociative recombination of H3_3S+^+ - reduce this discrepancy to a factor ~ 3.Comment: 30 pages, accepted for publication in A&

    Herschel observations of ortho- and para-oxidaniumyl (H_2O^+) in spiral arm clouds toward Sagittarius B2(M)

    Get PDF
    H_2O^+ has been observed in its ortho- and para- states toward the massive star forming core Sgr B2(M), located close to the Galactic center. The observations show absorption in all spiral arm clouds between the Sun and Sgr B2. The average o/p ratio of H_2O^+ in most velocity intervals is 4.8, which corresponds to a nuclear spin temperature of 21 K. The relationship of this spin temperature to the formation temperature and current physical temperature of the gas hosting H_2O^+ is discussed, but no firm conclusion is reached. In the velocity interval 0–60 km s^(−1), an ortho/para ratio of below unity is found, but if this is due to an artifact of contamination by other species or real is not clear

    High-Mass Proto-Stellar Candidates - I : The Sample and Initial Results

    Full text link
    We describe a systematic program aimed at identifying and characterizing candidate high-mass proto-stellar objects (HMPOs). Our candidate sample consists of 69 objects selected by criteria based on those established by Ramesh & Sridharan (1997) using far-infrared, radio-continuum and molecular line data. Infrared-Astronomical-Satellite (IRAS) and Midcourse-Space-Experiment (MSX) data were used to study the larger scale environments of the candidate sources and to determine their total luminosities and dust temperatures. To derive the physical and chemical properties of our target regions, we observed continuum and spectral line radiation at millimeter and radio wavelengths. We imaged the free-free and dust continuum emission at wavelengths of 3.6 cm and 1.2 mm, respectively, searched for H2O and CH3OH maser emission and observed the CO 2-1 and several NH3 lines toward all sources in our sample. Other molecular tracers were observed in a subsample. The presented results indicate that a substantial fraction of our sample harbors HMPOs in a pre-UCHII region phase, the earliest known stage in the high-mass star formation process.Comment: 16 pages, 11 eps-figures. Astrophysical Journal, in pres

    Outflow and dense gas emission from massive Infrared Dark Clouds

    Full text link
    Infrared Dark Clouds are expected to harbor sources in different, very young evolutionary stages. To better characterize these differences, we observed a sample of 43 massive Infrared Dark Clouds, originally selected as candidate high-mass starless cores, with the IRAM 30m telescope covering spectral line tracers of low-density gas, high-density gas, molecular outflows/jets and temperature effects. The SiO(2-1) observations reveal detections toward 18 sources. Assuming that SiO is exclusively produced by sputtering from dust grains, this implies that at least in 40% of this sample star formation is on-going. A broad range of SiO line-widths is observed (between 2.2 and 65km/s), and we discuss potential origins for this velocity spread. While the low-density tracers 12CO(2-1) and 13CO(1-0) are detected in several velocity components, the high-density tracer H13CO+(1--0) generally shows only a single velocity component and is hence well suited for kinematic distance estimates of IRDCs. Furthermore, the H13CO+ line-width is on average 1.5 times larger than that of previously observed NH3(1,1). This is indicative of more motion at the denser core centers, either due to turbulence or beginning star formation activity. In addition, we detect CH3CN toward only six sources whereas CH3OH is observed toward approximately 40% of the sample. Estimates of the CH3CN and CH3OH abundances are low with average values of 1.2x10^{-10} and 4.3x10^{-10}, respectively. These results are consistent with chemical models at the earliest evolutionary stages of high-mass star formation. Furthermore, the CH3OH abundances compare well to recently reported values for low-mass starless cores.Comment: 22 pages (ApJ referee style), 7 figures, accepted for Ap

    Herschel observations of interstellar chloronium. II - Detections toward G29.96-0.02, W49N, W51, and W3(OH), and determinations of the ortho-to-para and 35^{35}Cl/37^{37}Cl isotopic ratios

    Get PDF
    We report additional detections of the chloronium molecular ion, H2_2Cl+^+, toward four bright submillimeter continuum sources: G29.96, W49N, W51, and W3(OH). With the use of the HIFI instrument on the Herschel Space Observatory, we observed the 212−1012_{12}-1_{01} transition of ortho-H235_2^{35}Cl+^+ at 781.627 GHz in absorption toward all four sources. Much of the detected absorption arises in diffuse foreground clouds that are unassociated with the background continuum sources and in which our best estimates of the N(H2Cl+)/N(H)N({\rm H_2Cl^+})/N({\rm H}) ratio lie in the range (0.9−4.8)×10−9(0.9 - 4.8) \times 10^{-9}. These chloronium abundances relative to atomic hydrogen can exceed the predictions of current astrochemical models by up to a factor of 5. Toward W49N, we have also detected the 212−1012_{12}-1_{01} transition of ortho-H237_2^{37}Cl+^+ at 780.053 GHz and the 111−0001_{11}-0_{00} transition of para-H235_2^{35}Cl+^+ at 485.418 GHz. These observations imply H235Cl+/H237Cl+\rm H_2^{35}Cl^+/H_2^{37}Cl^+ column density ratios that are consistent with the solar system 35^{35}Cl/37^{37}Cl isotopic ratio of 3.1, and chloronium ortho-to-para ratios consistent with 3, the ratio of spin statistical weights.Comment: 31 pages, including 7 figures. Accepted for publication in the Ap
    • 

    corecore