300 research outputs found

    Hepatitis C virus cell-cell transmission and resistance to direct-acting antiviral agents

    Get PDF
    Hepatitis C virus (HCV) is transmitted between hepatocytes via classical cell entry but also uses direct cell-cell transfer to infect neighboring hepatocytes. Viral cell-cell transmission has been shown to play an important role in viral persistence allowing evasion from neutralizing antibodies. In contrast, the role of HCV cell-cell transmission for antiviral resistance is unknown. Aiming to address this question we investigated the phenotype of HCV strains exhibiting resistance to direct-acting antivirals (DAAs) in state-of-the-art model systems for cell-cell transmission and spread. Using HCV genotype 2 as a model virus, we show that cell-cell transmission is the main route of viral spread of DAA-resistant HCV. Cell-cell transmission of DAA-resistant viruses results in viral persistence and thus hampers viral eradication. We also show that blocking cell-cell transmission using host-targeting entry inhibitors (HTEIs) was highly effective in inhibiting viral dissemination of resistant genotype 2 viruses. Combining HTEIs with DAAs prevented antiviral resistance and led to rapid elimination of the virus in cell culture model. In conclusion, our work provides evidence that cell-cell transmission plays an important role in dissemination and maintenance of resistant variants in cell culture models. Blocking virus cell-cell transmission prevents emergence of drug resistance in persistent viral infection including resistance to HCV DAAs

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    A label free disposable device for rapid isolation of rare tumor cells from blood by ultrasounds

    Get PDF
    The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs) from white blood cells (WBCs) in a microfluidic device, "THINUS-Chip" (Thin-Ultrasonic-Separator-Chip), actuated by ultrasounds. We introduce for the first time the concept of plate acoustic waves (PAW) applied to acoustophoresis as a new strategy. It lies in the geometrical chip design: different to other microseparators based on either bulk acoustic waves (BAW) or surface waves (SAW, SSAW and tSAW), it allows the use of polymeric materials without restrictions in the frequency of work. We demonstrate its ability to perform high-throughput isolation of TCs from WBCs, allowing a recovery rate of 84%±8% of TCs with a purity higher than 80% and combined viability of 85% at a flow rate of 80 µL/min (4.8 mL/h). The THINUS-Chip performs cell fractionation with low-cost manufacturing processes, opening the door to possible easy printing fabrication

    Inhibiting NR5A2 targets stemness in pancreatic cancer by disrupting SOX2/MYC signaling and restoring chemosensitivity

    Get PDF
    Background: Pancreatic ductal adenocarcinoma (PDAC) is a profoundly aggressive and fatal cancer. One of the key factors defining its aggressiveness and resilience against chemotherapy is the existence of cancer stem cells (CSCs). The important task of discovering upstream regulators of stemness that are amenable for targeting in PDAC is essential for the advancement of more potent therapeutic approaches. In this study, we sought to elucidate the function of the nuclear receptor subfamily 5, group A, member 2 (NR5A2) in the context of pancreatic CSCs. Methods: We modeled human PDAC using primary PDAC cells and CSC-enriched sphere cultures. NR5A2 was genetically silenced or inhibited with Cpd3. Assays included RNA-seq, sphere/colony formation, cell viability/toxicity, real-time PCR, western blot, immunofluorescence, ChIP, CUT&Tag, XF Analysis, lactate production, and in vivo tumorigenicity assays. PDAC models from 18 patients were treated with Cpd3-loaded nanocarriers. Results: Our findings demonstrate that NR5A2 plays a dual role in PDAC. In differentiated cancer cells, NR5A2 promotes cell proliferation by inhibiting CDKN1A. On the other hand, in the CSC population, NR5A2 enhances stemness by upregulating SOX2 through direct binding to its promotor/enhancer region. Additionally, NR5A2 suppresses MYC, leading to the activation of the mitochondrial biogenesis factor PPARGC1A and a shift in metabolism towards oxidative phosphorylation, which is a crucial feature of stemness in PDAC. Importantly, our study shows that the specific NR5A2 inhibitor, Cpd3, sensitizes a significant fraction of PDAC models derived from 18 patients to standard chemotherapy. This treatment approach results in durable remissions and long-term survival. Furthermore, we demonstrate that the expression levels of NR5A2/SOX2 can predict the response to treatment. Conclusions: The findings of our study highlight the cell context-dependent effects of NR5A2 in PDAC. We have identified a novel pharmacological strategy to modulate SOX2 and MYC levels, which disrupts stemness and prevents relapse in this deadly disease. These insights provide valuable information for the development of targeted therapies for PDAC, offering new hope for improved patient outcomes. A Schematic illustration of the role of NR5A2 in cancer stem cells versus differentiated cancer cells, along with the action of the NR5A2 inhibitor Cpd3. B Overall survival of tumor-bearing mice following allocated treatment. A total of 18 PDX models were treated using a 2 x 1 x 1 approach (two animals per model per treatment); n=36 per group (illustration created with biorender.com )

    ISG15 and ISGylation is required for pancreatic cancer stem cell mitophagy and metabolic plasticity

    Get PDF
    Pancreatic cancer stem cells (PaCSCs) drive pancreatic cancer tumorigenesis, chemoresistance and metastasis. While eliminating this subpopulation of cells would theoretically result in tumor eradication, PaCSCs are extremely plastic and can successfully adapt to targeted therapies. In this study, we demonstrate that PaCSCs increase expression of interferon-stimulated gene 15 (ISG15) and protein ISGylation, which are essential for maintaining their metabolic plasticity. CRISPR-mediated ISG15 genomic editing reduces overall ISGylation, impairing PaCSCs self-renewal and their in vivo tumorigenic capacity. At the molecular level, ISG15 loss results in decreased mitochondrial ISGylation concomitant with increased accumulation of dysfunctional mitochondria, reduced oxidative phosphorylation (OXPHOS) and impaired mitophagy. Importantly, disruption in mitochondrial metabolism affects PaCSC metabolic plasticity, making them susceptible to prolonged inhibition with metformin in vivo. Thus, ISGylation is critical for optimal and efficient OXPHOS by ensuring the recycling of dysfunctional mitochondria, and when absent, a dysregulation in mitophagy occurs that negatively impacts PaCSC stemness

    Hepatitis C Virus Infection in Phenotypically Distinct Huh7 Cell Lines

    Get PDF
    In 2005, the first robust hepatitis C virus (HCV) infectious cell culture system was developed based on the HCV genotype 2a JFH-1 molecular clone and the human-derived hepatoma cell line Huh7. Although much effort has been made to dissect and expand the repertoire of JFH-1-derived clones, less attention has been given to the host cell despite the intriguing facts that thus far only Huh7 cells have been found to be highly permissive for HCV infection and furthermore only a limited number of Huh7 cell lines/stocks appear to be fully permissive. As such, we compiled a panel of Huh7 lines from disparate sources and evaluated their permissiveness for HCV infection. We found that although Huh7 lines from different laboratories do vary in morphology and cell growth, the majority (8 out of 9) were highly permissive for infection, as demonstrated by robust HCV RNA and de novo infectious virion production following infection. While HCV RNA levels achieved in the 8 permissive cell lines were relatively equivalent, three Huh7 lines demonstrated higher infectious virion production suggesting these cell lines more efficiently support post-replication event(s) in the viral life cycle. Consistent with previous studies, the single Huh7 line found to be relatively resistant to infection demonstrated a block in HCV entry. These studies not only suggest that the majority of Huh7 cell lines in different laboratories are in fact highly permissive for HCV infection, but also identify phenotypically distinct Huh7 lines, which may facilitate studies investigating the cellular determinants of HCV infection

    Increased susceptibility of Huh7 cells to HCV replication does not require mutations in RIG-I

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cytosolic retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor that senses HCV double-stranded RNA and triggers type I interferon pathways. The clone Huh7.5 of human hepatoma Huh7 cells contains a mutation in RIG-I that is believed to be responsible for the improved replication of HCV in these cells relative to the parental strain. We hypothesized that, in addition to RIG-I, other determinant(s) outside the RIG-I coding sequence are involved in limiting HCV replication in cell culture. To test our hypothesis, we analyzed Huh7 cell clones that support the efficient replication of HCV and analyzed the RIG-I gene.</p> <p>Results</p> <p>One clone, termed Huh7D, was more permissive for HCV replication and more efficient for HCV-neomycin and HCV-hygromycin based replicon colony formation than parental Huh7 cells. Nucleotide sequence analysis of the RIG-I mRNA coding region from Huh7D cells showed no mutations relative to Huh7 parental cells.</p> <p>Conclusions</p> <p>We derived a new Huh7 cell line, Huh7D, which is more permissive for HCV replication than parental Huh7 cells. The higher permissiveness of Huh7D cells is not due to mutations in the RIG-I protein, indicating that cellular determinants other than the RIG-I amino-acid sequence are responsible for controlling HCV replication. In addition, we have selected Huh7 cells resistant to hygromycin via newly generated HCV-replicons carrying the hygromycin resistant gene. Further studies on Huh7D cells will allow the identification of cellular factors that increased the susceptibility to HCV infection, which could be targeted for anti-HCV therapies.</p

    Viral Kinetics Suggests a Reconciliation of the Disparate Observations of the Modulation of Claudin-1 Expression on Cells Exposed to Hepatitis C Virus

    Get PDF
    The tight junction protein claudin-1 (CLDN1) is necessary for hepatitis C virus (HCV) entry into target cells. Recent studies have made disparate observations of the modulation of the expression of CLDN1 on cells following infection by HCV. In one study, the mean CLDN1 expression on cells exposed to HCV declined, whereas in another study HCV infected cells showed increased CLDN1 expression compared to uninfected cells. Consequently, the role of HCV in modulating CLDN1 expression, and hence the frequency of cellular superinfection, remains unclear. Here, we present a possible reconciliation of these disparate observations. We hypothesized that viral kinetics and not necessarily HCV-induced receptor modulation underlies these disparate observations. To test this hypothesis, we constructed a mathematical model of viral kinetics in vitro that mimicked the above experiments. Model predictions provided good fits to the observed evolution of the distribution of CLDN1 expression on cells following exposure to HCV. Cells with higher CLDN1 expression were preferentially infected and outgrown by cells with lower CLDN1 expression, resulting in a decline of the mean CLDN1 expression with time. At the same time, because the susceptibility of cells to infection increased with CLDN1 expression, infected cells tended to have higher CLDN1 expression on average than uninfected cells. Our study thus presents an explanation of the disparate observations of CLDN1 expression following HCV infection and points to the importance of considering viral kinetics in future studies of receptor expression on cells exposed to HCV
    corecore