1,924 research outputs found

    Single-fluorophore orientation determination with multiview polarized illumination : modeling and microscope design

    Get PDF
    Author Posting. © Optical Society of America, 2017. This article is posted here by permission of Optical Society of America for personal use, not for redistribution. The definitive version was published in Optics Express 25 (2017): 31309-31325, doi:10.1364/OE.25.031309.We investigate the use of polarized illumination in multiview microscopes for determining the orientation of single-molecule fluorescence transition dipoles. First, we relate the orientation of single dipoles to measurable intensities in multiview microscopes and develop an information-theoretic metric—the solid-angle uncertainty—to compare the ability of multiview microscopes to estimate the orientation of single dipoles. Next, we compare a broad class of microscopes using this metric—single- and dual-view microscopes with varying illumination polarization, illumination numerical aperture (NA), detection NA, obliquity, asymmetry, and exposure. We find that multi-view microscopes can measure all dipole orientations, while the orientations measurable with single-view microscopes is halved because of symmetries in the detection process. We also find that choosing a small illumination NA and a large detection NA are good design choices, that multiview microscopes can benefit from oblique illumination and detection, and that asymmetric NA microscopes can benefit from exposure asymmetry.National Institute of Health (NIH) (R01GM114274, R01EB017293)

    The Transiting Exocomets in the HD 172555 System

    Get PDF
    The Earth is thought to have formed dry, in a part of the Solar Nebula deficient in organic material, and to have acquired its organics and water through bombardment by minor bodies. Observations of this process in well-dated systems can provide insight into the probable origin and composition of the bombarding parent bodies. Transiting cometary activity has previously been reported in Ca II for the late-A member of the 241 Myr old Pictoris Moving Group member, HD 172555(Kiefer et al. 2014). We present HST STIS and COS spectra of HD 172555 demonstrating that the star has chromospheric emission and variable in falling gas features in transitions of silicon and carbon ions at times when no Fe II absorption is seen in the UV data, and no Ca II absorption is seen in contemporary optical spectra. The lack of CO absorption and stable gas absorption at the system velocity is consistent with the absence of a cold Kuiper belt analog (Riviere-Marichalar et al. 2012) in this system. The presence of infall in some species at one epoch and others at different epochs suggests that, like Pictoris, there may be more than one family of exocomets. If perturbed into star-grazing orbits by the same mechanism as for Pic, these data suggest that the wide planet frequency among A-early F stars in the PMG is at least 37.5, well above the frequency estimated for young moving groups independent of host star spectral type

    Polar Smectic Films

    Full text link
    We report on a new experimental procedure for forming and studying polar smectic liquid crystal films. A free standing smectic film is put in contact with a liquid drop, so that the film has one liquid crystal/liquid interface and one liquid crystal/air interface. This polar environment results in changes in the textures observed in the film, including a boojum texture and a previously unobserved spiral texture in which the winding direction of the spiral reverses at a finite radius from its center. Some aspects of these textures are explained by the presence of a Ksb term in the bulk elastic free energy density that favors a combination of splay and bend deformations.Comment: 4 pages, REVTeX, 3 figures, submitted to PR

    DZ Cha: a bona fide photoevaporating disc

    Full text link
    DZ Cha is a weak-lined T Tauri star (WTTS) surrounded by a bright protoplanetary disc with evidence of inner disc clearing. Its narrow \Ha line and infrared spectral energy distribution suggest that DZ Cha may be a photoevaporating disc. We aim to analyse the DZ Cha star + disc system to identify the mechanism driving the evolution of this object. We have analysed three epochs of high resolution optical spectroscopy, photometry from the UV up to the sub-mm regime, infrared spectroscopy, and J-band imaging polarimetry observations of DZ Cha. Combining our analysis with previous studies we find no signatures of accretion in the \Ha line profile in nine epochs covering a time baseline of 20\sim20 years. The optical spectra are dominated by chromospheric emission lines, but they also show emission from the forbidden lines [SII] 4068 and [OI] 6300A˚\,\AA that indicate a disc outflow. The polarized images reveal a dust depleted cavity of 7\sim7 au in radius and two spiral-like features, and we derive a disc dust mass limit of M_\mathrm{dust} 80 \MJup) companions are detected down to 0\farcs07 (8\sim 8 au, projected). The negligible accretion rate, small cavity, and forbidden line emission strongly suggests that DZ Cha is currently at the initial stages of disc clearing by photoevaporation. At this point the inner disc has drained and the inner wall of the truncated outer disc is directly exposed to the stellar radiation. We argue that other mechanisms like planet formation or binarity cannot explain the observed properties of DZ Cha. The scarcity of objects like this one is in line with the dispersal timescale (105\lesssim 10^5 yr) predicted by this theory. DZ Cha is therefore an ideal target to study the initial stages of photoevaporation.Comment: A&A in press, language corrections include

    Beyond "the Relationship between the Individual and Society": broadening and deepening relational thinking in group analysis

    Get PDF
    The question of ‘the relationship between the individual and society’ has troubled group analysis since its inception. This paper offers a reading of Foulkes that highlights the emergent, yet evanescent, psychosocial ontology in his writings, and argues for the development of a truly psychosocial group analysis, which moves beyond the individual/society dualism. It argues for a shift towards a language of relationality, and proposes new theoretical resources for such a move from relational sociology, relational psychoanalysis and the ‘matrixial thinking’ of Bracha Ettinger which would broaden and deepen group analytic understandings of relationality

    Gas and dust in the Beta Pictoris Moving Group as seen by the Herschel Space Observatory

    Get PDF
    Context. Debris discs are thought to be formed through the collisional grinding of planetesimals, and can be considered as the outcome of planet formation. Understanding the properties of gas and dust in debris discs can help us to comprehend the architecture of extrasolar planetary systems. Herschel Space Observatory far-infrared (IR) photometry and spectroscopy have provided a valuable dataset for the study of debris discs gas and dust composition. This paper is part of a series of papers devoted to the study of Herschel PACS observations of young stellar associations. Aims. This work aims at studying the properties of discs in the Beta Pictoris Moving Group (BPMG) through far-IR PACS observations of dust and gas. Methods. We obtained Herschel-PACS far-IR photometric observations at 70, 100 and 160 microns of 19 BPMG members, together with spectroscopic observations of four of them. Spectroscopic observations were centred at 63.18 microns and 157 microns, aiming to detect [OI] and [CII] emission. We incorporated the new far-IR observations in the SED of BPMG members and fitted modified blackbody models to better characterise the dust content. Results. We have detected far-IR excess emission toward nine BPMG members, including the first detection of an IR excess toward HD 29391.The star HD 172555, shows [OI] emission, while HD 181296, shows [CII] emission, expanding the short list of debris discs with a gas detection. No debris disc in BPMG is detected in both [OI] and [CII]. The discs show dust temperatures in the range 55 to 264 K, with low dust masses (6.6*10^{-5} MEarth to 0.2 MEarth) and radii from blackbody models in the range 3 to 82 AU. All the objects with a gas detection are early spectral type stars with a hot dust component.Comment: 12 pages, 7 figures, 6 table

    Exocomet signatures around the A-shell star Φ\Phi Leo?

    Get PDF
    We present an intensive monitoring of high-resolution spectra of the Ca {\sc ii} K line in the A7IV shell star Φ\Phi Leo at very short (minutes, hours), short (night to night), and medium (weeks, months) timescales. The spectra show remarkable variable absorptions on timescales of hours, days, and months. The characteristics of these sporadic events are very similar to most that are observed toward the debris disk host star β\beta Pic, which are commonly interpreted as signs of the evaporation of solid, comet-like bodies grazing or falling onto the star. Therefore, our results suggest the presence of solid bodies around Φ\Phi Leo. To our knowledge, with the exception of β\beta Pic, our monitoring has the best time resolution at the mentioned timescales for a star with events attributed to exocomets. Assuming the cometary scenario and considering the timescales of our monitoring, our results indicate that Φ\Phi Leo presents the richest environment with comet-like events known to date, second only to β\beta Pic.Comment: A&A letters, proof-correcte

    Holons:Towards a systematic approach to composing systems of systems

    Get PDF
    The world's computing infrastructure is increasingly differentiating into self-contained distributed systems with various purposes and capabilities (e.g. IoT installations, clouds, VANETs, WSNs, CDNs, ...). Furthermore, such systems are increasingly being composed to generate systems of systems that offer value-added functionality. Today, however, system of systems composition is typically ad-hoc and fragile. It requires developers to possess an intimate knowledge of system internals and low-level interactions between their components. In this paper, we outline a vision and set up a research agenda towards the generalised programmatic construction of distributed systems as compositions of other distributed systems. Our vision, in which we refer uniformly to systems and to compositions of systems as holons, employs code generation techniques and uses common abstractions, operations and mechanisms at all system levels to support uniform system of systems composition. We believe our holon approach could facilitate a step change in the convenience and correctness with which systems of systems can be built, and open unprecedented opportunities for the emergence of new and previously-unenvisaged distributed system deployments, analogous perhaps to the impact the mashup culture has had on the way we now build web applications

    Anomalous diffusion in polymers: long-time behaviour

    Full text link
    We study the Dirichlet boundary value problem for viscoelastic diffusion in polymers. We show that its weak solutions generate a dissipative semiflow. We construct the minimal trajectory attractor and the global attractor for this problem.Comment: 13 page
    corecore