
Holons: towards a systematic approach to composing
systems of systems

Gordon Blair1, Yérom-David Bromberg2, Geoff Coulson1, Yehia Elkhatib1,
Laurent Réveillère3, Heverson B. Ribeiro4, Etienne Rivière4 and François Taïani2

1. University of Lancaster, UK — 2. University of Rennes 1 - IRISA, France
3. University of Bordeaux, France — 4. University of Neuchâtel, Switzerland

g.coulson@lancaster.ac.uk and etienne.riviere@unine.ch

ABSTRACT
The world’s computing infrastructure is increasingly differ-
entiating into self-contained distributed systems with vari-
ous purposes and capabilities (e.g. IoT installations, clouds,
VANETs, WSNs, CDNs, . . .). Furthermore, such systems
are increasingly being composed to generate systems of sys-
tems that offer value-added functionality. Today, however,
system of systems composition is typically ad-hoc and frag-
ile. It requires developers to possess an intimate knowledge
of system internals and low-level interactions between their
components. In this paper, we outline a vision and set up a
research agenda towards the generalised programmatic con-
struction of distributed systems as compositions of other
distributed systems. Our vision, in which we refer uniformly
to systems and to compositions of systems as holons, employs
code generation techniques and uses common abstractions,
operations and mechanisms at all system levels to support
uniform system of systems composition. We believe our holon
approach could facilitate a step change in the convenience
and correctness with which systems of systems can be built,
and open unprecedented opportunities for the emergence of
new and previously-unenvisaged distributed system deploy-
ments, analogous perhaps to the impact the mashup culture
has had on the way we now build web applications.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; D.2.10 [Software Engi-
neering]: Design—Methodologies

General Terms
Design, Algorithms, Standardisation

Keywords
System composition, Systems of systems, Distributed systems

1. INTRODUCTION
The world’s computing infrastructure has become far re-

moved from the traditional picture of PCs, mobile devices
and IP networks; it now subsumes a diverse range of (semi-)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ARM 2015 December 07-11, 2015, Vancouver, BC, Canada
Copyright 2015 ACM 978-1-4503-3733-5/15/12...$15.00.
http://dx.doi.org/10.1145/2834965.2834970 .

autonomous infrastructures and sub-systems with widely
varying capabilities. Furthermore, it is increasingly common
for these systems to interact. For example, VANETs talk
to IoT environments that underpin smart cities [7], over-
lays adapt when the underlying network changes [9], and
cloud infrastructures store and process data gathered from
WSNs [16]. Other prominent examples involve the so-called
“cloud of things” [12,26], and the “TerraSwarm” [5]: the fu-
ture mega-environment of trillions of interacting sensors and
actuators.

However, when we consider techniques available for the
construction of such systems of systems [20], we see a signifi-
cant deficiency in the state of the art. In particular, when
developing individual distributed systems, developers are
forced to focus strongly at the level of individual nodes (e.g.
designing the per-node behaviour of a new DHT); so when
they develop a system of systems they are similarly forced
to focus on the internals of the systems being composed
(e.g. how individual nodes of the two systems must interact).
But as the number and diversity of distributed system de-
ployments burgeon, such low-level practices are increasingly
miring developers in accidental complexities, and hampering
the development of new systems of systems. We believe we
must stop reasoning in terms of individual nodes, or even
individual systems, and move away from ad-hoc approaches
to system of systems composition.

We propose in this paper a vision towards the construction
of distributed systems of systems that uniformly addresses the
specification of both individual distributed systems and their
composition, using a common code generational approach.
In a nutshell, our approach is as follows:

1. To represent systems as first-class entities that we can
specify and handle as programmatic units – i.e. at a
level that hides their internals, and in particular the
individual behaviour of their constituent nodes;

2. To treat the composition of such representations as a
simple operation that yields a new unitary first-class
system.

This is clearly an ambitious goal. We postulate, however,
that distributed systems research suggests the feasibility of
our proposed approach. In particular, we draw inspiration
from: i) component frameworks; ii) generative programming;
and iii) gossip-based self-stabilising overlays.

We believe our vision has the potential for cardinal impact
on the way future systems of systems are constructed, and
see it opening unprecedented opportunities for previously-
unenvisaged distributed system deployments – perhaps anal-
ogous to the impact that the mashup culture has had on

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/42415574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the way we now build web applications. We hope that the
vision, challenges, and tentative solutions we outline in this
paper might serve as a roadmap to help structure future
community-wide research in the field.

In the remainder of the paper, Section 2 discusses related
work; Section 3 presents some motivational use cases; and
Section 4 outlines a proposed model of first-class composable
systems. Finally, Section 5 concludes, and discusses future
work and open problems.

2. RELATED WORK
We consider relevant related work under the headings of

component frameworks, generative programming, and gossip-
based self-stabilising overlays.

Component frameworks. Component-based software mod-
els (e.g. DCOM, EJB, CCM, RAPIDWare [23], OpenCom [4],
and Fractal [3]) have long offered a popular approach to the
construction of distributed systems by composition, and we
see such work as having paved the way for compositional
principles at the systems of systems level. However, such
efforts have focused on composition at the level of nodes
or sub-node software units, rather than at the global level
of whole distributed systems. Similarly, while interesting
efforts were produced towards the automation of service
composition [17] the target remains that of individual nodes
rather than systems as a whole. Our contention is that this
is not the appropriate level of abstraction to apply when
considering the construction of systems of systems.

Generative programming. Recognising the need to work at
a higher level of abstraction, several researchers have investi-
gated the definition of individual systems through high-level
specification and code generation. This is especially the case
in the fields of network overlays (e.g. P2 [19], Mace [15],
Mosaic [22], SLOSL [1]); and wireless sensor networks (e.g.
Kairos [11], Flask [21]). Such work employs a domain-specific
programming model that abstracts some of the detail and
complexity of inter-node communication and coordination,
the goal being to write a single specification from which
per-node code can be generated and deployed. For exam-
ple, Flask uses a variant of Haskell, P2 uses a variant of
Datalog, and SLOSL uses an SQL-based notation. While
the generative programming approach is an advance over
hand-coded, node-level system construction, it still tends to
focus on the specification of per-node behaviour (e.g. reacting
to incoming messages from other nodes, or to lost links or
membership changes). Unfortunately, this limits its applica-
bility to system of systems composition: it is still concerned
with internals, not with externally-facing perspectives, and
so still forces the developer to focus on the internals of the
systems being composed rather than freeing her to think at
the level of systems as wholes.

Some overlay-based generative programming designs go a
little further towards facilitating systems of systems compo-
sition. For example, Dynamis [25] and SpiderNet [10] seek to
build compositions using a distributed probing approach that
“opportunistically” seeks nodes from other overlay instances,
attempting to find high-quality service paths through which
instances can be linked. The key limitation of these designs
is a lack of generality. Firstly, they support (opportunistic)
composition at run-time, but not at system specification time.
Secondly, although they support “horizontal” composition
(i.e. bridging) they lack support for “vertical” composition
(i.e. layering one system over another). More fundamentally,

they lack support for composing different classes of systems
(e.g. composing a WSN with a cloud).

Gossip-based self-stabilising overlays. Work in this third
area is of interest because it offers an uniform means of con-
structing a diverse range of distributed systems, e.g. robust
routing [8], publish/subscribe [28] and generic structured
overlays [13, 14, 29]: this promises a means of constructing
distributed systems that is more conducive to system com-
position than other approaches [24]. Such work especially
focuses on the construction of vertically-composed complex
systems such as rings whose nodes are implemented internally
as stars or sub-rings, or compositions of broadcast trees over
different IP domains [27]. However, it does not offer much
in terms of other types of composition discussed above (i.e.
“opportunistic”, “horizontal”): the behaviours and topologies
supported by these systems are still primarily monolithic and
isolated. Furthermore, the focus is at the level of mechanisms
as opposed to programmatic construction.

3. MOTIVATING USE CASES
To further motivate and exemplify system of systems com-

position, we present in this section two typical use cases,
followed by a brief discussion. Irrigation is an agricultural
monitoring and actuation scenario; and Rescue deals with
the opportunistic composition of potentially-isolated rescue
teams in a mountain rescue scenario.

3.1 Irrigation: WSN-enhanced agriculture

Field (owner A) Field (owner B)

sensors

aggregation

actuators

irrigation planning collecting
aggregated

observations
triggering
irrigation

Figure 1: Irrigation use case.

Our first use case (see Figure 1) is an agricultural scenario
in which battery-operated sensors are distributed over fields
to collect data such as humidity, crop height or soil chemistry.
Each sensor is equipped with short-range communications
technology with which it can communicate with its peers in
the vicinity. Some sensors are additionally equipped with
a long-range cellular communication capability, and so can
serve as aggregators that collect data locally and ship it to
a planning system running in a remote cloud. The “loop” is
closed when the planning system drives an in-field actuator
network that controls irrigation valves, fertiliser release, etc.
As well as being driven by the planning system, the actuators
may also be more locally driven by computations carried on
the actuator nodes themselves and/or nearby sensor nodes
with spare computational capacity. This enables the long-
range links to be used sparingly to conserve power where
necessary.

Commentary : We have here a technology-rich environ-
ment with numerous connectivity options and possibilities
for adapted behaviour depending on resource availability (e.g.
“switch to local planning when aggregator power is running
low”). It is easy to see how factoring out the various areas
of distributed functionality into composable systems (e.g. a

tree-based sensor network, a mesh-based aggregation net-
work, a system of local planning modules running on a subset
of sensor/actuator nodes, etc.), and then composing these as
unitary entities, might considerably ease the development of
practical deployments compared to the complexity evident
at the node level.

This use case illustrates two of the flavours of system com-
position that we discussed in Section 2: vertical (e.g. layering
of the aggregation network over the sensor network) and
horizontal (e.g. Field A to the planning system to Field B).
It does not seem to require opportunistic system composition,
but it does have a strong requirement for resource-driven
adaptation and also probably has a requirement to evolve
over time – e.g. depending on the season, whether more or
fewer fields are in use, etc.

3.2 Rescue: Connecting teams using a FANET
Our second use case (see Figure 2) involves a natural

disaster setting in which rescue teams are deployed over
a large area such as a mountain. If we assume that the
rescuers need to use a coordination and information sharing
application using mobile ad hoc network (MANET)-based
communication, and that they may need to range widely,
we can see that individuals and teams could easily become
isolated, both from each other and from backhaul connectivity
to the remote Control centre. To alleviate this, we might
deploy a swarm of Micro Air Vehicles (MAVs) over the
area, and have them self-organise into a Flying Ad-Hoc
Network (FANET [2]). If the MAVs are equipped with long-
range 3G/satellite capability, they can not only horizontally
compose (i.e. bridge) isolated teams, but also enable the
teams to communicate with the Control centre.

Rescue team MANETs

Emergency area Flying ad-hoc
network FANET

not in direct range

path realising
horizontal

composition

Figure 2: Rescue use case.

Commentary : Developing the software for this scenario
involves system of systems composition. It also requires op-
portunistic composition: the rescue team systems must be
“on the lookout” for the appearance of other systems such as
the FANET, and be ready to compose with it when it ap-
pears. Furthermore, such composition should be engineered
in such a way as to minimise bottlenecks and single-points-
of-failure (e.g. by maintaining redundant links). Expressing
opportunistic and redundant-link functionality would be a
complex task indeed if addressed at the level of individual
nodes. It is clear that attacking the problem at the level of
system composition, aided by code generation for the node
level, has considerable potential.

3.3 Discussion
We summarise the various properties of our use cases

in Table 1. An initial observation concerns heterogeneity :
system of systems programmers must typically deal with

Irrigation Rescue

Heterogeneity X X

Composition
vertical X

horizontal X X

opportunistic X

Adaptivity X X

Evolution X

Table 1: Challenges highlighted by the use cases.

a range of device types, each with specific features. It is
therefore ab-initio clear that working at the device level will
be a time-consuming and error-prone approach. Next, it is
easy to extrapolate from the use cases that both vertical
and horizontal composition are likely to be common, very
possibly co-existing as illustrated by Irrigation. Moreover,
Rescue shows that a single system type may be instantiated
multiple times, further increasing composition complexity.

We have also seen the importance of opportunistic com-
position whereby systems perceive at run-time that they
may benefit from composing with other systems, either ver-
tically, horizontally or both. In Rescue, the “trigger” for
opportunistic composition was the detection of the physical
proximity of the FANET and the discovery that it provides
similar connectivity functionality to the set of MANETs,
but with extended coverage area. We can easily conceive of
generalising such triggers to what has been called “semantic
proximity” [5]. For example, in Irrigation, we may want to
compose two actuator systems in adjacent fields when the
planning system deems that conditions in the two fields are
sufficiently similar.

Finally, we observe that many systems of systems will be
adaptive or evolutionary or both. We use the term “adaptive”
to refer to systems that need to reconfigure themselves au-
tonomously and dynamically, as in the case of the FANET
system in Rescue. We use the term “evolutionary” to refer to
situations where the need arises for users to explicitly alter
the set of deployed systems and their compositions over time,
as seen especially in Irrigation.

4. PROPOSED APPROACH
In order to address the above challenges, we now present a

“straw-man” design intended as a first attempt at a principled
and systematic approach to the programmatic composition
of systems of systems. Our first principle is to model any
distributed system as a unitary first-class programmatic en-
tity that we call a holon1, that can be specified, manipulated,
and reasoned about in a program; and then to provide pro-
grammatic concepts that enable a developer to construct
new holons – i.e. systems of systems – through programmatic
holon composition. This composition process is intended
to be very simple and straightforward, requiring only a few
program lines or simple graphical tools.

An important aspect of our approach is that the developer
is empowered to reason about system of systems definition
at the level of whole systems (holons), avoiding any need
to explicitly manipulate the node-level code that underlies

1We adopt this term from Arthur Koestler’s book, “The
Ghost in the Machine” (1967), where it is used to refer to
a member of a hierarchy that is a whole when viewed from
below, and simultaneously a part when viewed from above.
The term has been co-opted for use in the computer science
field before [6], but in a manner unrelated to our use.

holon
specifications

universe

Developer

leaf holons

Specification Generation
service

specification
library

runtime

holon compiler deployer

service
implementation library

holon impls.

B
C

A
D

E GF

Figure 3: General architecture of the proposed approach.

the holons being composed2. This avoids the “abstraction
mismatch” that we identified in Section 2.

We detail in the remainder of this section the key con-
stituents of our approach, which are depicted in Figure 3.

4.1 Specifying holons
As outlined, a distributed system, as represented as a

holon, is a recursive, hierarchical, composition of other sys-
tems (holons). The holons at the level immediately below a
given holon are referred to as the latter’s sub-holons. The
hierarchy bottoms out at the level of the smallest possible
“systems” (holons) in our model, which are degenerate dist-
ributed systems that run on individual physical nodes; these
are known as leaf holons.

In our model, the vertical composition of holons is achieved
by specialising or piling up holons on top of one another. For
example, Figure 4 illustrates an aggregating holon that is
built on top of (vertically composed with) a sensing holon.
Is is the fact that both of these holons are stacked on top
of a common underlying set of leaf holons (i.e. sensors) that
defines this as a vertical composition. Horizontal composition,
on the other hand, occurs when the sub-holons of a newly-
defined holon are built over disjoint sets of underlying leaf
holons. This can be seen in the irrigation holon, which
horizontally composes field holons and the planning holon,
each of which builds on disjoint sets of leaf holons.

4.1.1 Specifying a holon’s sub-holons
A holon’s constituent sub-holons are selected dynamically

from among a set of candidate sub-holons on the basis of
dynamically-valued properties attached to the latter (we
defer a detailed discussion of properties to Section 4.1.2).
Candidate sub-holons are selected from a so-called base holon
which serves as a kind of “platform” on which the new holon
is specified. Any holon can be used as a base-holon, but we
define two “special” holons that may serve as suitable base
holons in many cases: i) the infrastructure holon, whose sub-
holons are all the leaf holons ever defined – this essentially
represents a dynamic catalogue of available primitive system
elements; and ii) the universe holon, whose sub-holons are
all holons ever defined (except the universe holon itself),
including the infrastructure holon, all leaf holons, and all
already-defined and future-defined holons.

The fact that the set of sub-holons that will comprise a
newly-defined holon is selected intentionally (i.e. according

2Of course, this code still has to be produced, but it is
encapsulated in libraries (see more detail below) and hidden
from the developer who is specifying system compositions.

sensors cloudactuators

field
holon planning holon

aggregating
holonsensing holonactuating

holon

infrastructure holon

irrigation (top-level holon)

field
holon

field B
(not shown)

vertical
composition

horizontal
composition

vert. then horiz.
composition

Figure 4: Vertical and horizontal composition in Irrigation.

to dynamic selection criteria) is key. It means, for example,
that the compositional process is not limited to selecting sub-
holons that are newly-instantiated and built from scratch:
it is also possible to select sub-holons that are already de-
ployed and running. Furthermore, the sub-holons selected
are not necessarily known at holon specification time: it is
also possible to employ opportunistic selection at run-time,
as conditioned by run-time considerations (expressed as prop-
erties) such as QoS requirements, functionalities, available
energy, reachability to other holons, etc.

4.1.2 Specifying a holon’s service
We have so far discussed the abstract composition of holons,

but have said nothing about the specific functionality that a
deployed holon will offer – i.e. what the holon will actually
do. We refer to this functionality as the holon’s service –
essentially, it defines the value-added functionality that the
new holon will provide on top of the services already offered
by its sub-holons.

In the general case, the developer chooses her new holon’s
service from a service specification library, which contains
reusable predefined service specifications. Service specifica-
tions are abstract : the actual implementation of a service is
transparent to the developer, allowing her to think globally
about her holon’s functionality rather than at the level of
its constituents. Furthermore, dealing in terms of abstract
services allows us to offer several alternative implementations
of a given service (these implementations are kept in a service
implementation library); in such cases it can be left to the
compiler to choose the most appropriate implementation de-
pending, e.g., on QoS considerations or potential for reusing
existing services already deployed on the target sub-holons.

An abstract service specification is annotated with “re-
quired” properties, called rprops, which represent functional
and non-functional properties that the holon’s service will
require from its sub-holons to provide a certain level of
service or functionality. Rprops come in two flavours: pre-
deploy rprops should be satisfied prior to deployment (i.e.
at compile/link time) and remain satisfied subsequently at
run-time; whereas post-deploy rprops need not be satisfied
at compile/link time, but the deployment/ runtime system
(see Section 4.3) should make best efforts to satisfy them
opportunistically at run-time. In addition, service specifi-
cations are annotated with property dependency rules that
detail what it takes for each rprop to be satisfied in terms
of functionality offered by the holon’s sub-holons. These

squad holon
services = {routing, broadcast}

fanet holon — service = {routing}

team holonteam holon

Leaf holons: rescue teams members’ personal devices

in
fra

st
ru

ct
ur

e
ho

lo
n

Leaf holons: micro air vehicles

✓rprop={reachability
(post-deploy) }

properties for squad

opportunistically
compose

squad and fanet:
squad inherits

reachability pprop
from fanet

exports pprop =
{coverage,
connected }

properties for fanet

Figure 5: Provision of a pprop by opportunistic composition.

property dependency rules are written in terms of “provided”
properties called pprops that are attached to the (assumed
to be already-existent) sub-holons. In turn, the holon’s own
pprops are asserted when all these property dependency rules
are satisfied.

4.1.3 Specification example
We provide an example of service specification based on

the Rescue use case; see Figure 5. Specifically, we focus on
the case of the squad holon bridging multiple team holons.

Let us first assume that the developer has selected a service
called routing for both the team and squad holons: this offers
a point to point routing service between sub-holons. The
routing service specification defines an rprop called reacha-
bility that captures a requirement that all of the sub-holons
must always be mutually “reachable”. It also defines a corre-
sponding property dependency rule that grounds reachability
by stating that all of the sub-holons must offer either a
connected or a coverage pprop.

Let us now address the scenario in which reachability across
widely-distributed teams might not necessarily be provided
on initial deployment. To accommodate this scenario, we
consider reachability as a pre-deploy pprop for the team
holons, but as a post-deploy pprop for the squad holon. Given
this, when the subsequent deployment of the FANET makes
available a fanet holon that provides alternative reachability
across teams via a coverage pprop, the squad holon’s service’s
property dependency rule can trigger the opportunistic run-
time composition of the squad and fanet holons, enabling the
former’s reachability property to be satisfied by the latter.

4.2 Compiling holons
Once specified, holons are compiled into code that will

run on physical nodes. The compiler builds a per-node
executable relating to the holon by composing code modules
taken from the service implementation library, according
to the system’s holon hierarchy. This composition must
respect any property dependency rules, ensuring that rprops
(e.g. reachability) can be safely underpinned by a suitable
combination of sub-holon pprops (e.g. connected or coverage),
and the associated holon’s own value-adding code. From a
bottom-up perspective, this process begins with leaf holon
pprops such as stability, access to a persistent source of
energy, etc.

The compiler should only generate code for a given holon
if it is assured (under the system’s working assumptions)
that all pre-deploy rprops in the holon’s entire underlying
hierarchy can be satisfied. On the other hand, the compiler is
allowed to ignore post-deploy rprops that it cannot enforce at

compile time, and to defer their (possible) satisfaction until
run time, at which time they might be satisfied by composi-
tions with other running holons discovered opportunistically
by the runtime, as described above.

We see considerable scope for automated optimisation in
the composition of holons at both compile time and run time.
The compiler could for instance exploit property dependency
rules to infer situations in which requirements on sub-holons
might be met in indirect ways. Furthermore, as we assume
that most service implementations will employ overlay net-
work structures based on gossip-based self-stabilising over-
lays, the compiler can potentially extract similarities between
holons’ network structures and merge them into common
structures for better robustness and/or lower costs [18].

4.3 Deployment and runtime support
At runtime, holons require coordination and communi-

cation mechanisms that can support the different types of
composition (vertical, horizontal, opportunistic) that we have
discussed earlier. This support should further be scalable,
efficient and robust to sustain the large-scale deployment
scenarios we have mentioned (smart cities, e-agriculture,
large-scale rescue operations). We plan to fulfil these needs
by exploiting a combination of self-organising overlays [13,28],
epidemic protocols [27], and well-chosen point-to-point and
multicast interactions, dynamically selected depending on
the scope and scale of required interactions.

In architectural terms, such mechanisms will be managed
in a distributed runtime, deployed on each physical node.
The key responsibilities of the runtime are as follows:
– Metadata management : The runtime will keep track of

which holons exist on which nodes, along with per-node
dynamic properties (hardware capabilities, power status,
configuration etc.) and holons (service type, pprops, etc.).

– Deployment service: Whenever a request is made to in-
stantiate a holon on new hardware nodes, the runtime will
populate the nodes with the appropriate leaf holon code
and start the appropriate services.

– Opportunistic composition: The runtime will implement a
discovery service that actively seeks for non-local holons
in order to perform opportunistic compositions – i.e. com-
positions that derive from post-deploy rprops.

5. CONCLUSIONS AND FUTURE WORK
This paper proposes a new paradigm for the construction

of distributed systems of systems. Our vision hinges on two
key ideas: (i) treating any kind of distributed system as
a first class programmatic entity (which we have termed a
holon); and (ii) using sub-holon selection and composition as
fundamental operations on holons to generate further holons,
both at compile time and run time. These ideas permeate
our proposed approach to the specification, deployment, and
management of distributed systems of systems in a principled
and unitary fashion. We believe that our approach has
strong potential to raise the level of abstraction of distributed
programming by focusing explicitly on systems of systems
rather than merely on systems (or, worse, merely on nodes).

Besides its abstracting power, one of the key elements of
our vision is its unifying nature: as it provides a uniform ar-
chitectural view of diverse types of systems, it can be applied
equally well to application-level software and to low-level
infrastructure. As well as simplifying the task of the system
of systems developer, this architectural uniformity naturally
exposes opportunities for optimisation (e.g. the sharing of

common communicational structures and services among
holons), assisted by the runtime’s support for opportunistic
composition and property-based reasoning.

We believe our vision has potential as a convergence point
for future system of systems research. In particular, we close
by suggesting the following set of open issues within which
research groups with diverse interests and expertise can help
bring the holon vision to fruition:
– Domain specific languages and associated design/ develop-

ment tools. We have outlined a schema for holon specifi-
cation, but have said little about notations/ abstractions/
processes to help programmers generate these specifica-
tions. We envision a range of DSLs that might be suited
to different applications and domains.

– Type systems to control composition. Our uniform ap-
proach to system specification lends itself to formal type-
checking: conformance rules could be associated with the
sub-holon selection and composition processes to enforce
sound compositions, and to formalise dependencies. We
consider that type verification could have a big impact
on developers’ ability to manipulate and reason about
increasingly complex distributed systems.

– Security and privacy will obviously be critical concerns in
a world that makes it “easy” to compose multi-levelled dist-
ributed systems. Although security and privacy are highly
challenging issues, we think the artefacts of our design
may help in the provision of hooks for the implementation
of security and privacy policies – e.g. a protected runtime
might be trusted to generate only certified compositions.

– Service composition. Our approach is underpinned by a
library of service specifications that can be composed in
many configurations and still work correctly. Achieving
this is not straightforward. We are clear that gossip-based
protocols offer a promising basis for this, but significant
work remains in this area.

6. REFERENCES
[1] S. Behnel. SLOSL: A modelling language for topologies

and routing in overlay networks. PDP, 2007.

[2] I. Bekmezci, O. K. Sahingoz, and S. Temel. Flying
ad-hoc networks (FANETs): A survey. Ad Hoc
Networks, 11(3), 2013.

[3] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and
J. Stefani. The FRACTAL component model and its
support in java. Soft.: Pract. and Exp., 36(11), 2006.

[4] G. Coulson, G. Blair, P. Grace, F. Täıani, A. Joolia,
K. Lee, J. Ueyama, and T. Sivaharan. A generic
component model for building systems software. ACM
Transactions on Computer Systems, 26(1), 2008.

[5] E. Lee et al . The swarm at the edge of the cloud. IEEE
Design & Test, 31(3), 2014.

[6] K. Fischer, M. Schillo, and J. Siekmann. Holonic
multiagent systems: A foundation for the organisation
of multiagent systems. HoloMAS, 2003.

[7] P. Ghazizadeh, R. Mukkamala, and S. El-Tawab.
Scheduling in vehicular cloud using mixed integer linear
programming. MSCC, 2014.

[8] C. Gottron, S. Bergsträsser, and R. Steinmetz. Robust
overlay routing in structured, location aware mobile
peer-to-peer systems. MOBIQUITOUS, 2013.

[9] P. Grace, D. Hughes, B. Porter, G. S. Blair,
G. Coulson, and F. Täıani. Experiences with Open

Overlays: A middleware approach to network
heterogeneity. EuroSys, 2008.

[10] X. Gu, K. Nahrstedt, and B. Yu. SpiderNet: An
integrated peer-to-peer service composition framework.
HPDC, 2004.

[11] R. Gummadi, O. Gnawali, and R. Govindan.
Macro-programming wireless sensor networks using
kairos. DCOSS, 2005.

[12] C. Huo, T.-C. Chien, and P. Chou. Middleware for
IoT-cloud integration across application domains. IEEE
Design & Test, 31(3), 2014.

[13] M. Jelasity, A. Montresor, and O. Babaoglu. T-Man:
Gossip-based fast overlay topology construction.
Computer Networks, 53(13), 2009.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. van Steen. Gossip-based peer
sampling. ACM TOCS, 25(3), 2007.

[15] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and
A. M. Vahdat. MACE: Language support for building
distributed systems. PLDI, 2007.

[16] K. Lee, D. Murray, D. Hughes, and W. Joosen.
Extending sensor networks into the cloud using
Amazon Web Services. NESEA, 2010.

[17] L. Leite, C. Moreira, D. Cordeiro, M. Gerosa, and
F. Kon. Deploying large-scale service compositions on
the cloud with the choreos enactment engine. NCA,
2014.

[18] S. Lin, F. Täıani, and G. Blair. Exploiting synergies
between coexisting overlays. DAIS, 2009.

[19] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica. Implementing declarative
overlays. SOSP, 2005.

[20] M. W. Maier. Architecting principles for system of
systems. Systems Engineering, 1(4), 1998.

[21] G. Mainland, G. Morrisett, and M. Welsh. Flask:
Staged functional programming for sensor networks.
ICFP, 2008.

[22] Y. Mao, B. T. Loo, Z. Ives, and J. M. Smith. Mosaic:
Declarative platform for dynamic overlay composition.
Computer Networks, 56(1), 2012.

[23] P. K. Mckinley, U. I. Padmanabhan, N. Ancha, and
A. Ancha. Experiments in composing proxy audio
services for mobile users. Middleware, 2001.

[24] E. Rivière, R. Baldoni, H. Li, and J. Pereira.
Compositional gossip: A conceptual architecture for
designing gossip-based applications. OSR, 2007.

[25] F. A. Samimi and P. K. McKinley. Dynamis: Dynamic
overlay service composition for distributed stream
processing. SEKE, 2008.

[26] J. Soldatos, M. Serrano, and M. Hauswirth.
Convergence of utility computing with the
internet-of-things. IMIS, 2012.

[27] F. Täıani, S. Lin, and G. S. Blair. Gossipkit: A unified
component framework for gossip. IEEE Transactions
on Software Engineering, 40(2), 2014.

[28] S. Voulgaris, E. Rivière, A.-M. Kermarrec, and M. van
Steen. Sub-2-Sub: Self-organizing content-based
publish subscribe for dynamic large scale collaborative
networks. IPTPS, 2006.

[29] S. Voulgaris and M. van Steen. VICINITY: A pinch of
randomness brings out the structure. Middleware, 2013.

