349 research outputs found

    Competition of fusion and quasi-fission in the reactions leading to production of the superheavy elements

    Full text link
    The mechanism of fusion hindrance, an effect observed in the reactions of cold, warm and hot fusion leading to production of the superheavy elements, is investigated. A systematics of transfermium production cross sections is used to determine fusion probabilities. Mechanism of fusion hindrance is described as a competition of fusion and quasi-fission. Available evaporation residue cross sections in the superheavy region are reproduced satisfactorily. Analysis of the measured capture cross sections is performed and a sudden disappearance of the capture cross sections is observed at low fusion probabilities. A dependence of the fusion hindrance on the asymmetry of the projectile-target system is investigated using the available data. The most promising pathways for further experiments are suggested.Comment: 8 pages, 7 figures, talk presented at 7th International School-Seminar on Heavy-Ion Physics, May 27 - June 1, 2002, Dubna, Russi

    Differential flow in heavy-ion collisions at balance energies

    Full text link
    A strong differential transverse collective flow is predicted for the first time to occur in heavy-ion collisions at balance energies. We also give a novel explanation for the disappearance of the total transverse collective flow at the balance energies. It is further shown that the differential flow especially at high transverse momenta is a useful microscope capable of resolving the balance energy's dual sensitivity to both the nuclear equation of state and in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres

    Elliptic flow in heavy ion collisions near the balance energy

    Get PDF
    The proton elliptic flow in collisions of Ca on Ca at energies from 30 to 100 MeV/nucleon is studied in an isospin-dependent transport model. With increasing incident energy, the elliptic flow shows a transition from positive to negative flow. Its magnitude depends on both the nuclear equation of state (EOS) and the nucleon-nucleon scattering cross section. Different elliptic flows are obtained for a stiff EOS with free nucleon-nucleon cross sections and a soft EOS with reduced nucleon-nucleon cross sections, although both lead to vanishing in-plane transverse flow at the same balance energy. The study of both in-plane and elliptic flows at intermediate energies thus provides a means to extract simultaneously the information on the nuclear equation of state and the nucleon-nucleon scattering cross section in medium.Comment: 6 pages, 2 figure

    Charged pions from Ni on Ni collisions between 1 and 2 AGeV

    Full text link
    Charged pions from Ni + Ni reactions at 1.05, 1.45 and 1.93 AGeV are measured with the FOPI detector. The mean π±\pi^{\pm} multiplicities per mean number of participants increase with beam energy, in accordance with earlier studies of the Ar + KCl and La + La systems. The pion kinetic energy spectra have concave shape and are fitted by the superposition of two Boltzmann distributions with different temperatures. These apparent temperatures depend only weakly on bombarding energy. The pion angular distributions show a forward/backward enhancement at all energies, but not the Θ=900\Theta = 90^0 enhancement which was observed in case of the Au + Au system. These features also determine the rapidity distributions which are therefore in disagreement with the hypothesis of one thermal source. The importance of the Coulomb interaction and of the pion rescattering by spectator matter in producing these phenomena is discussed.Comment: 22 pages, Latex using documentstyle[12pt,a4,epsfig], to appear in Z. Phys.

    Systematics of pion emission in heavy ion collisions in the 1A GeV regime

    Full text link
    Using the large acceptance apparatus FOPI, we study pion emission in the reactions (energies in GeV/nucleon are given in parentheses): 40Ca+40Ca (0.4, 0.6, 0.8, 1.0, 1.5, 1.93), 96Ru+96Ru (0.4, 1.0, 1.5), 96Zr+96Zr (0.4, 1.0, 1.5), 197Au+197Au (0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include longitudinal and transverse rapidity distributions and stopping, polar anisotropies, pion multiplicities, transverse momentum spectra, ratios for positively and negatively charged pions of average transverse momenta and of yields, directed flow, elliptic flow. The data are compared to earlier data where possible and to transport model simulations.Comment: 56 pages,42 figures; to be published in Nuclear Physics

    A proposed reaction channel for the synthesis of the superheavy nucleus Z = 109

    Full text link
    We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30^{30}Si + 243^{243}Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.Comment: 4 pages, 2 figures, 2 tables; two typos are corrected in Ref. [12] and [19

    Buda-Lund hydro model for ellipsoidally symmetric fireballs and the elliptic flow at RHIC

    Get PDF
    The ellipsoidally symmetric extension of Buda-Lund hydrodynamic model is shown here to yield a natural description of the pseudorapidity dependence of the elliptic flow v2(η)v_2(\eta), as determined recently by the PHOBOS experiment for Au+Au collisions at sNN=130\sqrt{s_{NN}} = 130 and 200 GeV. With the same set of parameters, the Buda-Lund model describes also the transverse momentum dependence of v2v_2 of identified particles at mid-rapidity. The results confirm the indication for quark deconfinement in Au+Au collisions at RHIC, obtained from a successful Buda-Lund hydro model fit to the single particle spectra and two-particle correlation data, as measured by the BRAHMS, PHOBOS, PHENIX and STAR collaborations.Comment: 16 pages, 2 figures, 1 table added, discussion extended and an important misprint in the caption of Fig. 1 is correcte

    Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state

    Full text link
    We present measurements of the excitation function of elliptic flow at midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per nucleon. For the integral flow, we discuss the interplay between collective expansion and spectator shadowing for three centrality classes. A complete excitation function of transverse momentum dependence of elliptic flow is presented for the first time in this energy range, revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies. The equation of state of compressed nuclear matter is addressed through comparisons to microscopic transport model calculations.Comment: 10 pages, 4 eps figures, submitted for publication. Data files will be available at http://www.gsi.de/~fopiwww/pub

    Flow angle from intermediate mass fragment measurements

    Full text link
    Directed sideward flow of light charged particles and intermediate mass fragments was measured in different symmetric reactions at bombarding energies from 90 to 800 AMeV. The flow parameter is found to increase with the charge of the detected fragment up to Z = 3-4 and then turns into saturation for heavier fragments. Guided by simple simulations of an anisotropic expanding thermal source, we show that the value at saturation can provide a good estimate of the flow angle, Θflow\Theta_{flow}, in the participant region. It is found that Θflow\Theta_{flow} depends strongly on the impact parameter. The excitation function of Θflow\Theta_{flow} reveals striking deviations from the ideal hydrodynamical scaling. The data exhibit a steep rise of \Theta_{\flow} to a maximum at around 250-400 AMeV, followed by a moderate decrease as the bombarding energy increases further.Comment: 28 pages Revtex, 6 figures (ps files), to appear in Nucl.Phys.

    Event Anisotropy in High Energy Nucleus-Nucleus Collisions

    Full text link
    The predictions of event anisotropy parameters from transport model RQMD are compared with the recent experimental measurements for 158AA GeV Pb+Pb collisions. Using the same model, we study the time evolution of event anisotropy at 2AA GeV and 158AA GeV for several colliding systems. For the first time, both momentum and configuration space information are studied using the Fourier analysis of the azimuthal angular distribution. We find that, in the model, the initial geometry of the collision plays a dominant role in determining the anisotropy parameters.Comment: 18 pages, 7 figures, 2 table
    corecore