2,499 research outputs found

    Fate of the Universe, Age of the Universe, Dark Matter, and the Decaying Vacuum Energy

    Get PDF
    It is shown that in the cosmological models based on a vacuum energy decaying as a^{-2}, where a is the scale factor of the universe, the fate of the universe in regard to whether it will collapse in future or expand forever is determined not by the curvature constant k but by an effective curvature constant k_{eff}. It is argued that a closed universe with k=1 may expand forever, in other words simulate the expansion dynamics of a flat or an open universe because of the possibility that k_{eff}=0 or -1, respectively. Two such models, in one of which the vacuum does not interact with matter and in another of which it does, are studied. It is shown that the vacuum equation of state p_{vac}= -\rho_{vac} may be realized in a decaying vacuum cosmology provided the vacuum interacts wuth matter. The optical depths for gravitational lensing as a function of the matter density and other parameters in the models are calculated at a source redshift of 2. The age of the universe is discussed and shown to be compatible with the new Hipparcos lower limit of 11Gyr. The possibility that a time-varying vacuum energy may serve as dark matter is suggested.Comment: AAS LaTex, 29 pages, published in the Astrophysical Journal, 520, 45, 199

    SURF -A simulation model for the behaviour of oil slicks at sea

    Get PDF
    This report describes the SURF model, one of the basic models of the OPERA software package, which predicts the fate of oil spilled at sea. SURF is a fully operational computer model for describing the behaviour of oil slicks at sea. With necessary information, it may be used to simulate or to forecast the transport, the spreading and the aging of oil slicks. The model aims mainly at forecasting the behaviour of a pollution in case of an accident at sea. The information provided by the model (position and extent of the polluted area, oil characteristics) can efficiently help the authorities and the combating teams in making decisions on how to wrestle the pollution. But other model applications can be faced. For instance, knowing the zones where oil is extracted, carried or trans-shiped, the model can be used to investigate, a priori, the high risk areas

    Investigating of Mechanical Properties of Mortars Based on Fly Ash and Blast Furnace Slag Activated with Alkali

    Full text link
    Alkali activated mortars obtained from granulated blast furnace slag and fly ash were used instead of Portland cement by activating with alkali. Sodium silicate and sodium hydroxide were activated blast furnace slag and fly ash. Mortar samples were prepared 40x40x160 mm as prismatic samples according to TS EN 196-1 and they were cured at room temperature. Compressive and flexural strength of the mortar samples including blast furnace slag and fly ash were investigated by experimenting

    High-sensitivity noncontact atomic force microscope/scanning tunneling microscope (nc AFM/STM) operating at subangstrom oscillation amplitudes for atomic resolution imaging and force spectroscopy

    Get PDF
    Cataloged from PDF version of article.We describe a new, highly sensitive noncontact atomic force microscope/scanning tunneling microscope (STM) operating in ultrahigh vacuum (UHV) with subangstrom oscillation amplitudes for atomic resolution imaging and force-distance spectroscopy. A novel fiber interferometer with similar to4x10(-4) A/rootHz noise level is employed to detect cantilever displacements. Subangstrom oscillation amplitude is applied to the lever at a frequency well below the resonance and changes in the oscillation amplitude due to tip-sample force interactions are measured with a lock-in amplifier. Quantitative force gradient images can be obtained simultaneously with the STM topography. Employment of subangstrom oscillation amplitudes lets us perform force-distance measurements, which reveal very short-range force interactions, consistent with the theory. Performance of the microscope is demonstrated with quantitative atomic resolution images of Si(111)(7x7) and force-distance curves showing short interaction range, all obtained with <0.25 Angstrom lever oscillation amplitude. Our technique is not limited to UHV only and operation under liquids and air is feasible. (C) 2003 American Institute of Physics

    Supernovae Ia Constraints on a Time-Variable Cosmological "Constant"

    Get PDF
    The energy density of a scalar field ϕ\phi with potential V(ϕ)ϕαV(\phi) \propto \phi^{-\alpha}, α>0\alpha > 0, behaves like a time-variable cosmological constant that could contribute significantly to the present energy density. Predictions of this spatially-flat model are compared to recent Type Ia supernovae apparent magnitude versus redshift data. A large region of model parameter space is consistent with current observations. (These constraints are based on the exact scalar field model equations of motion, not on the widely used time-independent equation of state fluid approximation equations of motion.) We examine the consequences of also incorporating constraints from recent measurements of the Hubble parameter and the age of the universe in the constant and time-variable cosmological constant models. We also study the effect of using a non-informative prior for the density parameter.Comment: Accepted for publication in Ap

    Geometrical Constraints on the Cosmological Constant

    Full text link
    The cosmological constant problem is examined under the assumption that the extrinsic curvature of the space-time contributes to the vacuum. A compensation mechanism based on a variable cosmological term is proposed. Under a suitable hypothesis on the behavior of the extrinsic curvature, we find that an initially large Λ(t)\Lambda(t) rolls down rapidly to zero during the early stages of the universe. Using perturbation analysis, it is shown that such vacuum behaves essentially as a spin-2 field which is independent of the metric.Comment: [email protected], 17 pages, Latex, 2 figures obtained by reques

    Higher spin fields and the problem of cosmological constant

    Get PDF
    The cosmological evolution of free massless vector or tensor (but not gauge) fields minimally coupled to gravity is analyzed. It is shown that there are some unstable solutions for these fields in De Sitter background. The back reaction of the energy-momentum tensor of such solutions to the original cosmological constant exactly cancels the latter and the expansion regime changes from the exponential to the power law one. In contrast to the adjustment mechanism realized by a scalar field the gravitational coupling constant in this model is time-independent and the resulting cosmology may resemble the realistic one.Comment: 15 pages, Latex twic

    Charged Dilaton Black Holes with Unusual Asymptotics

    Get PDF
    We present a new class of black hole solutions in Einstein-Maxwell-dilaton gravity in n4n \ge 4 dimensions. These solutions have regular horizons and a singularity only at the origin. Their asymptotic behavior is neither asymptotically flat nor (anti-) de Sitter. Similar solutions exist for certain Liouville-type potentials for the dilaton.Comment: 24 pages, harvmac.tex, no figure
    corecore