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TOWARDS A LOCAL DIAGNOSTIC METHOD

Grigory Isayev

ABSTRACT

Closed expressions for absolute velocity as a
function of density, surface wind stress, and bottom
topography are derived from the governing equations
of geostrophy, hydrostaticity, incompressibility, and
conservation of mass plus the vertical boundary con-
ditions of Ekman pumping at the ocean surface and
no-normal-flow at the ocean bottom. These expres-
sions are horizontally local and are lower in order of
derivatives than the Needler formula.

1. INTRODUCTION

The steady motion of an incompressible ideal
fluid of low Rossby number is described by the
geostrophic, hydrostatic equations of motion, con-
tinuity, and comservation of mass (Welander, 1971;
Needler, 1985; Pedlosky, 1987)

pf xu=-VP —gpk (1)

(2)
(3)

Here u = (u, v, w) is the three-dimensional velocity, p
the density, P the pressure, g the gravitational accel-
eration, k a unit vector along the vertical axis z, and
f the Coriolis parameter f times k.

V-u=0
u-Vp=20

As has been shown by Welander (1971), these
equations lead to conservation of the large-scale po-
tential vorticity, ¢ = f(8p/0z), along a streamline

u-Vg=20 (4)
As a consequence of (3)—(4) the absolute velocity can
be represented in the form (assuming that | Vpx Vg |
is not zero)

Vpx Vg

ol i 5
| Vox Vg | ®

u=+yn, n=

where n is a unit vector which according to (3), (4)
is normal to Vp and Vg simultaneously and v'is a
scalar coefficient of proportionality. Also available as a
consequence of (1)—(3) are the thermal wind relations

BnH

- _ 9
B = o} (k x Vp) (6)

where ugy = (u,v,0) is a horizontal projection of u.
Below the subscripts H and z designate horizontal
and vertical projections of a vector).

The fascinating fact that within the governing
equations (1) — (3) the constant of integration of the

thermal wind relations can be determined from den-
sity field was noticed by Stommel and Schott (1977)
within the B-spiral method and by Killworth (1979)
within the analysis of section data. A closed expres-
sion for absolute velocity as a function of density was
derived from (1) — (3) by Needler (1985) based on
the representation (5). The Needler formula written
in terms of notations (5) looks as follows

u = g 4 ( k-1 n (7)
Oz

This formula shows (Pedlosky, 1987) that for an
ideal fluid on a global scale the density field com-
pletely determines the absolute velocity field. The
Needler formula is local, i.e. the absolute velocity at
certain point is determined by the density field in the
vicinity of this point. It does not involve horizontal
or vertical integration and does not require horizon-
tal or vertical boundary conditions. The Needler for-
mula is of the third order in derivatives of density and
contains all three components of n. Vertical compo-
nent of n is much smaller than its horizontal compo-
nents (n./ | ng |= w/ | ug |~ 10*). Higher deriva-
tives of density and n, are the troublesome terms that
are very sensitive to errors in the input density field
(for analysis of errors of vertical component of veloc-
ity computed from climatological data see Isayev and
Levitus, 1995).

Isayev (1994) formulated a system of linear al-
gebraic equations for computation of absolute veloc-
ity from density, surface wind stress, and botiom to-
pography based on the governing equations (1), (2),
advection-diffusion balance of density, an assumption
that there is a thermocline, and the vertical boundary
conditions of Ekman pumping at the surface and no
normal flow at the bottom. These equations are ap-
plicable in the areas where there is a thermocline and
do not contain derivatives of the input data higher
than first.

Chu (1994) used combination of equations (5)
and (6) to derive a system of linear algebraic equa-
tions for computation of horizontal components of ab-

‘solute velocity from density field. These equations are

of the second order in derivatives of density. The re-
sults of Chu (1994) computations of the North At-
lantic circulation give rise to hope for practical ap-
plicability of a local diagnostic method based on the
governing equations (1) — (3).

In Section 2 of this work a closed expression for
absolute velocity as a function of density is derived
from the governing equations (1) — (3) that is of the



same order in derivatives of density as the Needler
formula, but does not contain n,. In Sections 3 and
4 the closed expressions for the absolute velocity as a
function of density, surface wind stress, and bottom
topography are derived from the governing equations
(1) — (3) plus the vertical boundary conditions of Ek-
man pumping at the surface and no-normal-flow at
the bottom which are correspondingly of the second
and of the first order in derivatives of the input data
indicated above.

2. AN ALTERNATIVE TO THE NEEDLER
FORMULA

Combination of the thermal wind relations (6)
with z derivative of the horizontal projection

uy = yny (8)
of equation (5) leads to
dy Ong g
= ——(kxV 9
B 5 Ve (9)

Vector product of equation (9) and vector ngy elimi-
nates the term with 8v/0z

9 _
7(nH x E—_) B Pf( i % 6% WAl (10)

- -‘f?k(ng -Vp)

Assuming that (ng x (8ng/8z)), is not zero, z-
component of equation (10) yields an expression

i ng- Vp
pf (DH % 8;113)
z

y = -

(11)

For comparison, following is the Needler expres-
sion of 4 written in terms of horizontal, H, and ver-

tical, 2z, components of n and V
g 1 n,

5=
P’Vpx CQ|(D v (fgzﬂ)
(12)

Both (11) and (12) contain the spatial derivatives of
density of up to the third order. However, formula
(11) unlike (12) does not contain n,.
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3. FORMULA FOR ABSOLUTE VELOCITY OF
THE SECOND ORDER IN DERIVATIVES

It follows from the thermal wind relations (6)
that uy can be represented in the form

ug = uge + UHs (13)
where gy is unknown bottom velocity and
ugs = / —(k x Vp)d (14)

is the geostrophic shear relative to the bottom deter-
mined by p and h.

Substitution of (13) and (8) provides

ugy + ugs = Yoy (15)

Assuming that ng - V5@ is not zero, scalar product

of equation (15) and VyQ, where Q = f/h is the
planetary vorticity,
ugy-VeQ+ugs - VgQ=vyng-VgQ  (16)

yields an expression for v

_ wnVeQ+unsVyQ
ng - VygQ

(17)

In the right hand side of (17) Vi@, ugs, and ugsy,
and ng are determined by p and h, while two compo-
nents of the horizontal bottom velocity ugp remain
unknown. However, it is shown below as a conse-
quence of the governing equations (1) — (3) and the
vertical boundary conditions

(18)

w(iz=0) = w, = k-Vm(%)

w(z = —h) == —Uugp- V};h (19)

that the combination ugy - Vy@Q can be expressed
through p, h and and surface wind stress 7.

The condition of Ekman pumping (18) and the
condition of no-normal-flow at the bottom (19) are
known to be reliable (see e.g. Bogden et al., 1993;
Isayev and Levitus, 1995). Note that (18) is equivalent
to (w+wg) |:=0= 0, where wg(), ¢, 2) is the Ekman
component of vertical velocity that is small compared
with the geostrophic component, w, below the surface
Ekman layer, while w,(}, ¢) is the Ekman pumping
determined by the surface wind stress.

Vertical integration of the geostrophic vorticity
balance

Bv = f%';ﬂ (20)

that follows from (1) — (3) and use of the vertical
boundary conditions (18) — (19) yields

-
ﬁf vdz = f(we +ugs - Vygh) (21)
—h
On the other hand, according to (13), (14)
0
f vdz = hvy+ Vs (22)
~h
where
0 0
dp
Vg = dz = — e o T
s /_h vsdz _[thcos¢3Adz (23)



Vs is the geostrophic shear component of meridional
transport determined by p and h. Combination of (21)
and (22) and regrouping leads to the equation

ah
+vb(fR—a¢—ﬁh) =
— fwe +BVs

where ) is the longitude, ¢ the latitude, and R the
Earth radius. (24) can be transformed into

ums - VeQ = (1/h*)(fw. — fVs) = B

The expression in (25) designated by B is of the first
order in derivatives of density, surface wind stress,
and bottom topography. Note that B is the compo-
nent of the bottom flow normal to planetary vorticity
contours. Equations that are equivalent to (25) were
discussed in a different context by Mertz and Wright
(1992), Bogden et al., (1993).

ah

" Reospon (24)

(25)

A closed expression for horizontal component of
absolute velocity that follows from (8), (17), (25) has
the form

ag = Btugs-VuQ

ng - VgQ
B+ugs-VgQ

(Vox Vq)u - VuQ

ng =
(26)
(Vo x Va)u

Expression (26) is horizontally local and is of the
first order in derivatives of 7 and h and of the sec-
ond order in derivatives of p. Second derivatives of
p are present in (26) only within ngy which in the
present context is a horizontal unit vector (since
n,/ng |=w/ [ ug |~ 10-% InH |=1—6,6 ~ 10_4).
Direction of ng can be determined geometrically as
intersection of the surfaces of constant p and constant
g or, in other words, as direction of the line of con-
stant potential vorticity drawn on isopycnal surface.
Plots of such lines known as isopycnic potential vor-
ticity maps are commonly available (e.g., Stammer
and Woods, 1987).

For each horizontal location it is enough to de-
termine horizontal components of absolute velocity at
one level z = z,. Then, the horizontal components of
bottom velocity are determined by (13), (14) and (26)

qu(A:q&) = “H(A:¢1za) == uHS(A!¢tzG) (27)
and absolute velocities at different levels are deter-
ined by (13), (14), and (27). Therefore, conservation
of mass has to be employed only in the vicinity of
one surface z = zg(A, ¢). Such surface can be chosen
at mid depths away from boundary layers, say, along
the 27.5 kg - m~3 isopycnal where representation (5)
with unknown 7 leads to realistic streamlines (e.g.,
Stammer and Woods, 1987).

Vertical integration of (20) with the use of (22)

leads to
B(hvy + Vs) = f(we — ws) (28)

Wp = W, — ?(hvb + V,) (29)
Given the horizontal components of bottom velocity,
formula (29) allows one of calculate also its vertical
component. Formula (29) is preferable for this pur-
pose to the vertical component of equation (5) with v
determined by (26) or to the bottom boundary con-
dition (19). This is because z-component of (5) in-
volves the troublesome term n, and because (19) is a
scalar product of nearly parallel vectors ugy and Vh
(see discussion of this problem in Isayev and Levitus,
1995). Vertical component of absolute velocity at dif-
ferent levels can be determined from the integrated
geostrophic vorticity balance (20)

11)(2) = ?/_‘;(vb +vs)dz'+ wp (30)

where vy, wp, and vs are determined by (26), (27);
(29), and (14).

4, FORMULA FOR ABSOLUTE VELOCITY OF
THE FIRST ORDER IN DERIVATIVES

The condition of no-normal-flow at the bottom
(19) can be written in the form
w,-Vh=0 (31)

where u; = (ug,w;) and by definition Vh
(Vgh,1). As a consequence of (3) and (31) the bot-

tom velocity can be represented in the form (assuming
that | (Vp)s x Vh | is not zero)

(Vp)b x Vh
[(Vo)s x VA |

up = a mp, my =

(32)

where my is a unit vector directed along the bottom
velocity streamline which according to (3) and (31) is
normal to (Vp), and Vh simultaneously, and « is a
scalar coefficient of proportionally.

Substitution of the horizontal projection of (32)

Ugp = INgp (33)
into equation (25) leads to
amygy,-VgQ =B (34)

Assuming that myy - V5 Q is not zero, equation (34)
yields a closed expression for @ and comsequently
equation (32) yields a closed expression for bottom
velocity

B

mpy 'VHme
B

((Vp)b X Vh) . VHQ

up =

(35)

((Vp)s x Vh)

Formula (35) determines all three components of the
reference (bottom) velocity as a horizontally local



function of density, surface wind stress, bottom topog-
raphy, and their first derivatives. Direction of the unit
vector my can also be determined geometrically as di-
rection of line of constant potential density drawn on
the ocean bottom. As has been discussed in Section 3,
it is preferable to calculate wjy through equation (29)
rather than through (35).

Absolute horizontal velocities at different levels
are determined by (35) and by integrated thermal
wind relations (13), (14). Then absolute vertical ve-
locities at different levels are determined by (30).

5. CONCLUSION

The Needler formula for absolute velocity (equa-
tions (5), (12)) which is a consequence of the gov-
erning equations (1) — (3) is of the third order in
derivatives of density and contains the troublesome
term n.. An alternative formula for absolute velocity
(equations (5), (11)) derived in this work from the
same governing equations is of the same third order
in derivatives of density but does not contain n,. Im-
position of the vertical boundary conditions (18), (19)
in addition to the same governing equations (1) — (3)
allowed us to derive the horizontally local formulae
for the absolute velocity of the second order (equa-
tions (5), (26)) and of the first order (equations (32),
(35), (13), (14)) in derivatives of density, surface wind
stress and bottom topography.

The main advantage of a horizontally local di-
agnostic method based on the formulae discussed
above over the established nonlocal diagnostic meth-
ods (e.g., Mellor et al., 1982) is that it does not involve
horizontal integration and does not require horizontal
boundary conditions. For this reason such a method
is applicable in the regions without continuous hori-
zontal boundaries and in the areas within closed {/h
lines that are characteristics of the basic equation of
the Mellor et al. (1982) method.

The absolute geostrophic velocity computed us-
ing closed analytical expressions discussed above can
be used for initialization of prognostic models. Use for
such initialization of the climatological density field
and the absolute geostrophic velocity field balanced
with it, rather than zero velocity field, may reduce the
spin-up time (Chu, 1994). Indeed, a greatly reduced
spin-up time in the analogous situation is pointed out
by Ezer and Mellor (1994).
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A METHODOLOGY FOR MODEL INTERCOMPARISON:

Vlaams Instituut voor de Zee
Flandsrs Maring Institute

INTRODUCTION

Over recent years the intercomparison of shal-
low sea model results has been performed in differ-
ent domains of interest, e.g. the North Sea (Peeck et
al., 1983; de Vries, 1992; de Vries et al., 1995), the
Adriatic Sea (de Vries et al., 1995), the Aegean Sea
(de Vries et al., 1995), the English Channel (Jamart
and Ogzer, 1989; Werner, 1989, 1995), the plume of
the Rhine River (Ruddick et al., 1995) or the Halten
Bank area, off Norway (Hackett and Roed, 1994).

All of these exercises followed relatively similar
procedures. First, the model runs to be carried out
were defined so that the models had sufficiently simi-
lar computational domains and forcings. Second, the
distance between the model results — and, in most
cases, between the model results and the observations
— was evaluated according to various norms. Finally,
attempts were made to identify the reasons for the
discrepancies between the model results.

It seems that the first and second tasks were gen-
erally carried out successfully. The third stage, how-
ever, did not always lead to detailed or useful conclu-
sions. One of the reasons underlying this partial fail-
ure was obviously the difficulty to link cause and ef-
fect when dealing with complex, non-linear models. In
view of these difficulties, we have decided to seek tech-
niques that could facilitate the understanding of the
discrepancies between model results. Here, we provide
a preliminary analysis of the potential for intercom-
parison studies of the “factor separation method”,
which was devised by Stein and Alpert (1993) in the
scope of meso-scale atmospheric modelling.

AN INTERCOMPARISON METHOD

One of the most popular approaches for under-
standing how a given model is working consists in
performing sensitivity studies. The latter may be per-
formed in an extremely elegant and rational way by
resorting to the method of Stein and Alpert (1993),
which is outlined below.

In the governing equations, or in the forcings,
switches may be introduced, so that appropriate
terms may be “turned on” or “turned off”. Hereafter,
the switches are denoted s; (i = 1, 2, ...,n). When
a given switch is zero, the corresponding term is dis-
abled, and when the switch is equal to 1, the corre-
sponding term is active.

Here, we assume that switches may act on any
kind of terms, be they part of the initial conditions,
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the boundary conditions or the governing equations.
Stein and Alpert (1993), however, seem to adopt a
more restrictive way of introducing switches.

Every quantity i considered in the analysis of
the model results may be regarded as a fanction of
the switches, i.e. ¥ = 4(s1, 82, ..., 3a). The method
may be applied whether or not 3 depends on time or
space coordinates.

If there is only one switch, (1) is associated with
the results obtained when the phenomenon concerned
by the switch is present. Conversely, if the relevant
process is disabled by setting the switch to zero, the
variable ¢ then reads (0). We may write

$(1) = $(0) + Ag(1), (1)

where A9(1) = (1) — ¥(0) is a measure of the role
of the process in which we are interested. Obviously,
to evaluate the sensitivity of the model results to a
given phenomenon, i.e. to compute A(1), 2 runs of
the model must be performed.

Computing A(1) is typical of a model sensitiv-
ity study where the influence of one single process
is examined. If several processes need to be consid-
ered at a time, say 2 for simplicity, one may com-
pute A(1,0) = 4(1,0) — 4(0,0) and A%(0,1) =
%(0,1) — 4(0,0). Nonetheless, in general, one may
not write 9%(1,1) = #(0,0) + A#(1,0) + A%(0,1),
since the response of the model is unlikely to be lin-
ear. This is the stumbling block of certain sensitivity
studies. Stein and Alpert (1993) suggested overcom-
ing this difficulty by taking into account the “syn-
ergistic term”, defined to be A(1,1) = #(1,1) +
¥(0,0) — (1, 0) — %(0, 1), so that )

$00,1) = $(0,0)-+ A3(0,0) + 29(0,1) + 29011
2

The synergistic term A(1,1) may be regarded as a
measure of the interactions between the two processes
considered. As was shown by Khain et al. (1993), the
synergistic term may be much larger than the classical
sensitivity measures, At(1,0) and A¢(0,1). In such
a situation, it would be foolhardy to deal with the
classical sensitivity estimates only.

If the influence of 2 phenomena is investigated,
4 model runs are needed. When 3 processes are con-
cerned, it is necessary to produce 8 sets of model re-
sults. In general, 2® runs must be carried out. What-
ever the number of phenomena considered, the model
response may alway be written in terms of quantities
obeying a simple additive principle that holds true in



spite of the possible non-linearity of the model. The
generalisation of expressions (1) and (2) may be found
in Stein and Alpert (1993).

The choice of the processes to be singled out is
crucial. Some choices may obviously lead to irrelevant
results. In addition, the sensitivity of the model re-
sults to a given phenomenon depends on the whole set
of phenomena on which switches are acting (Alpert et
al., 1995).

We suggest applying the factor separation
method in the framework of model intercomparison
exercises. One would analyse the sensitivity of each
model to a series of processes or forcings. A thorough
analysis of the Aw’s would certainly help explaining
the reason of the discrepancies between the models
considered. Such an approach is illustrated below.

ILLUSTRATION

The usefulness of the factor separation technique
for model intercomparison 1is illustrated with the help
of MUMM’s operational North Sea model (Adam,
1987). If 7 and u represent the sea surface elevation
and the depth-averaged horizontal velocity, the equa-
tions of the model read

on

a-{-‘V‘(Hu):U, (3)

s b

Zt—u+31u-Vu+fe, xu=-—-gVn+ %-%szu,

(4)
where ¢ is time; V denotes the “gradient operator”;
f, e., g and A(= 10* m? s~1) represent the Coriolis
factor, the vertical unit vector, the gravitational ac-
celeration and the horizontal viscosity, respectively;
H is the sea depth, while 75 and 7% stand for the
specific surface and bottom stresses.

In all the simulations carried out here, the wind
stress is neglected, i.e., 7° = 0. The flow in the com-
putational domain is forced by prescribing the M2
tide elevation — which is the dominant tidal compo-
nent in the North Sea — along the open sea bound-
aries. Each model run is carried out until a periodic
regime is established.

The variable we are going to examine, i.e. v,
is the amplitude of the M2 tide, obtained from a
Fourier analysis of the model results. Thus, ¢ is a
time-independent quantity ensuing from the post-
processing of the model results. It is also worth bear-
ing in mind that 7 is a positive definite quantity, i.e.
¥ 2>0.

It is decided to investigate the respective roles
of momentum advection and bottom friction. Accord-
ingly, the switches s; and s — pertaining to advection
and bottom friction, respectively, ~ are introduced
into the momentum equation (4).

To have different models, two vers.sns of
MUMM’s model — hereafter referred to as A «nd B
— are set up. The model A is that which is usea in
operational forecasting: the advection of momentum
is discretized by a first-order upwind scheme and the
bottom stress is computed as

'7"’:(:"1_',;]u.|'l.lI (5)

where the bottom drag coefficient Cp is 2.40 x 10~3
in the English Channel and the Southern Bight, and
is taken to be 2.04 x 1073 in the rest of the compu-
tational domain. The model B is similar to A, except
that the momentum advection is computed accord-
ing to a second-order, centered scheme. In addition,
the bottom stress is still parameterized by (5), but
the drag coefficient is 2.32 x 1072, ¢/(25 + H)? and
1.21x 1072 if H <40 m, 40 < H < 65 m and 65 m
< H, respectively (Verboom et al., 1992).

In a “real-world” model intercomparison study,
the models dealt with are generally so different that
they are unlikely to provide similar results even when
all switches are set to zero. To place ourselves in a
similar situation, we have further modified the model
B, by adding 5 meters to the unperturbed sea depth
used in A. In other words, we have resisted the temp-
tation of cheating by preventing ¢4(0, 0) from being
equal to 4%(0,0)...

When analysing the model results, use is made
of the operator “<>”, denoting the average over the
computational domain.

Since

<AL -$P1) >
<AL > +<9B(Ly)5)z - o1 (6

the results of the complete models are significantly
different. That < $4(1,1) > (= 1.2 m) is somewhat
smaller than < %% (1, 1) > (= 1.4 m) may indicate
that there is more damping in A.

The space structures of ¥4 (1, 1) and %% (1, 1),
depicted in Figs. 1 and 2, exhibit some discrepancies,
the interpretation of which is quite difficult.

The ratios

(<| AyA(1,0) [> <] Ag5(1,0) |>)
< P4(0,0) > ' < $B(0,0) >

= (0.25,0.022) (7)

imply that A is much more sensitive to advection
than B, which, at first, may seem surprising, since
the Rossby number of the flow is of order 0.02 - if
the velocity and space scales are taken to be 0.5 m
s~1 and 250 km, respectively. It may be deemed re-
assuring that <| A(1,0) [> / < (0,0) > is of the
same order of magnitude as the Rossby number for
model B, while it is worrying that this ratio is about



10 times larger for model A. That the model A is
overly sensitive to advection is most probably due
to the first-order upwind discretization of the mo-
mentum advection. Carrying things to extremes, one
might say that, in model A, the advection terms are,
in fact, dissipative terms. This is somewhat confirmed
by < Ay4(1,0) > being negative, because advection
reduces the amplitude of the tidal elevation.
On the other hand, we have

( )

implying that the effect of the bottom friction is
slightly more important in A than in B, which is not
surprising since, at most locations, the bottom drag
coefficient is larger in A than in B. Nonetheless, in A
and B, Cp is of the same order of magnitude, which
is in agreement with the ratios (8) being also of the
same order of magnitude.

<l ayA(0,1) |> <] ayF(0,1) |>
< $4(0,0)> ' < ¢5(0,0)>

= (0.59,0.42),

The synergistic terms are
(9

The relative smallness of the synergistic term of
model B obviously ensues from the advection being
truly negligible. For model A, however, it is conceiv-
able that the synergistic term is significant because
the bottom stress obeys a non-linear parameéteriza-
tion while the damping effect of advection and bot-
tom friction is of equivalent importance.

<| AgA(1,1) |> <] AvP(1,1) >
< $4A(0,0) > < 4Z(0,0) >

= (0.25,0.017).

CONCLUSION

A more profound analysis of the present numer-
ical experiments will be given in Deleersnijder et al.,
(1995). Nevertheless, at the present stage, a useful
— though preliminary - conclusion may be drawn. It
is believed that the factor separation method offers
relevant guide lines for performing intermodel sen-
sitivity experiments, which are necessary to identify
the very reasons of the discrepancies between the re-
sults of different models. In the example above, the
discretization of the advection term of model A is
shown to be inappropriate — in spite of the smallness
of the Rossby number, which might have lead one to
believe that advection is, in any case, unimportant.
This problem could not have been identified by sim-
ply looking at crude model results, i.e. 44(1,1) and
¥B(1,1) as would have been done in a simple model
intercomparison exercise.
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ON THE CONVERSATION OF POTENTIAL
VORTICITY FOR VISCOUS CURRENTS

E. Salusti and R. Serravall

1. INTRODUCTION

In this note we discuss a particularly simple gen-
eralization of conserved quantities during oceanic pro-
cesses, as salinity and potential vorticity, nicely dis-
cussed by Gill (1973) and Pedlosky (1989).

Let us in general consider a well defined oceanic
current with velocities u;(z,y,2z,t) = wui(zi,t). A
physical quantity ¢ is conserved if:

dp(zi,t) _ O
—e Tl R D 1
dt oot (1)
One can easily show that if a quantity x(z;,?) has the
property:
dx(z;,1)

o (2)

= a(t)x(zi, t) +7(t)

then it gives origin to a conserved quantity, namely
@y. Let us indeed consider:

[ a(ear’
tg

ox = x(zirt)e +6(t) 3)
one can easily show that:
g?sox = —af(t)xe” J %'y
Jahard 8 ®
- T 8
¢ X &
8 _ = Jothat' Ox
s X = " Ba; )

and summing all this, one finally obtains:

d

— = - fa(t’)dt'f_izc_
atx=

a - [ attar’
aﬁ(t) —€ ax +e o

%ﬁ(t) — fa!(t')dt'ax +e frx(t')dt'ax (6)

+e~ J o)

So the quantity, ¢, is conserved if we specify ((t)

such that:
8 _ e !
3P0 +ye [ =g (™)
at

These considerations give us some freedom in choos-

ing conserved quantities, that indeed can satisfy ei-
ther the classical equation (1) or the milder equation

(2)-

2. APPLICATION TO THE POTENTIAL
VORTICITY OF OCEANIC CURRENTS

We now apply this viewpoint to the poten-
tial vorticity conservation as discussed by Pedlosky
(1989), using his formalism and definitions. Indeed
calling:

ﬁa:2ﬁ+Vxﬁ':2ﬁ+df
F the frictional terms

(9)

dil, _ d

di

w-(

To discuss frictional terms F that are well known to
be important near the coasts, but also open Ocean
currents can feel their effect, the term F can be seen
in different viewpoints. One of the simplest and most
popular approaches assumes:

for a regular function A one has the classical Ertel
(‘-‘_’1 2

theorem:
p ) T op

v v VvV F
_P§_£)+_.(V><_)
p P p

F=—vpi vER

(11)
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