4,582 research outputs found
Influence of Mg, Ag and Al substitutions on the magnetic excitations in the triangular-lattice antiferromagnet CuCrO2
Magnetic excitations in CuCrO, CuCrMgO,
CuAgCrO, and CuCrAlO have been
studied by powder inelastic neutron scattering to elucidate the element
substitution effects on the spin dynamics in the Heisenberg triangular-lattice
antiferromagnet CuCrO. The magnetic excitations in
CuCrMgO consist of a dispersive component and a flat
component. Though this feature is apparently similar to CuCrO, the energy
structure of the excitation spectrum shows some difference from that in
CuCrO. On the other hand, in CuAgCrO and
CuCrAlO the flat components are much reduced, the
low-energy parts of the excitation spectra become intense, and additional
low-energy diffusive spin fluctuations are induced. We argued the origins of
these changes in the magnetic excitations are ascribed to effects of the doped
holes or change of the dimensionality in the magnetic correlations.Comment: 7 pages, 5 figure
Why Is Supercritical Disk Accretion Feasible?
Although the occurrence of steady supercritical disk accretion onto a black
hole has been speculated about since the 1970s, it has not been accurately
verified so far. For the first time, we previously demonstrated it through
two-dimensional, long-term radiation-hydrodynamic simulations. To clarify why
this accretion is possible, we quantitatively investigate the dynamics of a
simulated supercritical accretion flow with a mass accretion rate of ~10^2
L_E/c^2 (with L_E and c being, respectively, the Eddington luminosity and the
speed of light). We confirm two important mechanisms underlying supercritical
disk accretion flow, as previously claimed, one of which is the radiation
anisotropy arising from the anisotropic density distribution of very optically
thick material. We qualitatively show that despite a very large radiation
energy density, E_0>10^2L_E/(4 pi r^2 c) (with r being the distance from the
black hole), the radiative flux F_0 cE_0/tau could be small due to a large
optical depth, typically tau 10^3, in the disk. Another mechanism is photon
trapping, quantified by vE_0, where v is the flow velocity. With a large |v|
and E_0, this term significantly reduces the radiative flux and even makes it
negative (inward) at r<70r_S, where r_S is the Schwarzschild radius. Due to the
combination of these effects, the radiative force in the direction along the
disk plane is largely attenuated so that the gravitational force barely exceeds
the sum of the radiative force and the centrifugal force. As a result, matter
can slowly fall onto the central black hole mainly along the disk plane with
velocity much less than the free-fall velocity, even though the disk luminosity
exceeds the Eddington luminosity. Along the disk rotation axis, in contrast,
the strong radiative force drives strong gas outflows.Comment: 8 pages, 7 figures, accepted for publication in Ap
Super-critical Accretion Flows around Black Holes: Two-dimensional, Radiation-pressure-dominated Disks with Photon-trapping
The quasi-steady structure of super-critical accretion flows around a black
hole is studied based on the two-dimensional radiation-hydrodynamical (2D-RHD)
simulations. The super-critical flow is composed of two parts: the disk region
and the outflow regions above and below the disk. Within the disk region the
circular motion as well as the patchy density structure are observed, which is
caused by Kelvin-Helmholtz instability and probably by convection. The
mass-accretion rate decreases inward, roughly in proportion to the radius, and
the remaining part of the disk material leaves the disk to form outflow because
of strong radiation pressure force. We confirm that photon trapping plays an
important role within the disk. Thus, matter can fall onto the black hole at a
rate exceeding the Eddington rate. The emission is highly anisotropic and
moderately collimated so that the apparent luminosity can exceed the Eddington
luminosity by a factor of a few in the face-on view. The mass-accretion rate
onto the black hole increases with increase of the absorption opacity
(metalicity) of the accreting matter. This implies that the black hole tends to
grow up faster in the metal rich regions as in starburst galaxies or
star-forming regions.Comment: 16 pages, 12 figures, accepted for publication in ApJ (Volume 628,
July 20, 2005 issue
Large transconductance oscillations in a single-well vertical Aharonov-Bohm interferometer
Aharonov-Bohm (AB) interference is reported for the first time in the
conductance of a vertical nanostructure based on a single GaAs/AlGaAs quantum
well (QW). The two lowest subbands of the well are spatially separated by the
Hartree barrier originating from electronic repulsion in the modulation-doped
QW and provide AB two-path geometry. Split-gates control the in-plane
electronic momentum dispersion. In our system, we have clearly demonstrated AB
interference in both electrostatic and magnetic modes. In the latter case the
magnetic field was applied parallel to the QW plane, and perpendicular to the
0.02 um^2 AB loop. In the electrostatic mode of operation the single-QW scheme
adopted led to large transconductance oscillations with relative amplitudes
exceeding 30 %. The relevance of the present design strategy for the
implementation of coherent nanoelectronic devices is underlined.Comment: Accepted for publication on Physical Review B Rapid Communication
Optical identification of ISO far-infrared sources in the Lockman Hole using a deep VLA 1.4 GHz continuum survey
By exploiting the far-infrared(FIR) and radio correlation, we have performed
the Likelihood-Ratio analysis to identify optical counterparts to the
far-infrared sources in the Lockman Hole. Using the likelihood ratio analysis
and the associated reliability, 44 FIR sources have been identified with radio
sources. Redshifts have been obtained for 29 out of 44 identified sources. One
hyper-luminous infrared galaxy (HyLIRG) with and four ultraluminous infrared
galaxies (ULIRGs) are identified in our sample. The space density of the FIR
sources at z = 0.3-0.6 is 4.6\times 10^{-5}Mpc^{-3}, implying a rapid evolution
of the ULIRG population. Most of \ISO FIR sources have their FIR-radio ratios
similar to star-forming galaxies ARP 220 and M82. At least seven of our FIR
sources show evidence for the presence of an active galactic nucleus (AGN) in
optical emission lines, radio continuum excess, or X-ray activity. Three out of
five (60%) of the ULIRG/HyLIRGs are AGN galaxies. Five of the seven AGN
galaxies are within the ROSAT X-ray survey field, and two are within the
XMM-Newton survey fields. X-ray emission has been detected in only one source,
1EX030, which is optically classified as a quasar. The non-detection in the
XMM-Newton 2-10 keV band suggests a very thick absorption obscuring the central
source of the two AGN galaxies. Several sources have an extreme FIR luminosity
relative to the optical R-band, L(90\mu\mathrm{m})/L(R) > 500, which is rare
even among the local ULIRG population. While source confusion or blending might
offer an explanation in some cases, they may represent a new population of
galaxies with an extreme activity of star formation in an undeveloped stellar
system -- i.e., formation of bulges or young ellipticals.Comment: 55 pages, 16 figures. To appear in A
Zeeman Spectroscopy of the Star Algebra
We solve the problem of finding all eigenvalues and eigenvectors of the
Neumann matrix of the matter sector of open bosonic string field theory,
including the zero modes, and switching on a background B-field. We give the
discrete eigenvalues as roots of transcendental equations, and we give
analytical expressions for all the eigenvectors.Comment: (1, 25) pages, 2 Figure
Observation of a Highly Spin Polarized Topological Surface State in GeBiTe
Spin polarization of a topological surface state for GeBiTe, the
newly discovered three-dimensional topological insulator, has been studied by
means of the state of the art spin- and angle-resolved photoemission
spectroscopy. It has been revealed that the disorder in the crystal has a minor
effect on the surface state spin polarization and it exceeds 75% near the Dirac
point in the bulk energy gap region (180 meV). This new finding for
GeBiTe promises not only to realize a highly spin polarized surface
isolated transport but to add new functionality to its thermoelectric and
thermomagnetic properties.Comment: 5 pages, 4 figure
Toward Open-Closed String Theoretical Description of Rolling Tachyon
We consider how the time-dependent decay process of an unstable D-brane
should be described in the full (quantum) open-closed string theory. It is
argued that the system, starting from the unstable D-brane configuration, will
evolve in time into the time-independent open string tachyon vacuum
configuration which we assume to be finite, with the total energy conserved. As
a concrete realization of this idea, we construct a toy model describing the
open and closed string tachyons which admits such a time-dependent solution.
The structure of our model has some resemblance to that of open-closed string
field theory.Comment: 1+10 pages, 6 figures. v2: a reference adde
Low-temperature electrical transport in bilayer manganite LaSrMnO
The temperature and magnetic field dependence of anisotropic in-plane
and out-of-plane resistivities have been investigated in
single crystals of the bilayer manganite LaSrMnO.
Below the Curie transition temperature 125 K, and
display almost the same temperature dependence with an up-turn around 50 K. In
the metallic regime (50 K 110 K), both and
follow a dependence, consistent with the two-magnon
scattering. We found that the value of the proportionality coefficient
and the ratio of the exchange interaction obtained
by fitting the data are in excellent agreement with the calculated
based on the two-magnon model and deduced from neutron scattering,
respectively. This provides further support for this scattering mechanism. At
even lower , in the non-metallic regime ( 50 K), {\it both} the in-plane
and out-of-plane conductivities obey a
dependence, consistent with weak localization effects. Hence, this demonstrates
the three-dimensional metallic nature of the bilayer manganite
LaSrMnO at .Comment: 7 pages and 5 figures, accepted for publication in Phys. Rev.
The Schrodinger Wave Functional and Closed String Rolling Tachyon
In this short note we apply Schrodinger picture description of the
minisuperspace approach to the closed string tachyon condensation. We will
calculate the rate of produced closed string and we will show that the density
of high massive closed string modes reaches the string density in time of order
one in string units.Comment: 12 page
- …
