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1. Introduction

After Rastelli, Sen and Zwiebach calculated, in [1], the spectrum and all the eigenvectors of the
zero-momentum Neumann matrix in the matter sector M , it has become clear that the knowledge
of the spectrum is very useful to perform exact calculations in string field theory [2, 3, 4]. Also, it
has recently been shown by Douglas, Liu, Moore and Zwiebach in [5] that this allows us to write the
star-product of two zero-momentum string fields as a continuous tensor product of Moyal products,
each of which corresponding to one eigenvalue in the spectrum of M . The noncommutativity
parameter θ of each of these Moyal products is given as a function of the eigenvalue λ. For λ = −1

3
,
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it is zero, and we therefore have one commutative product corresponding to the momentum carried
by half of a string (which is conserved in this setup).

Because of this success, it has become a subject of interest to diagonalize Neumann matrices in
diverse situations: In [6], Mariño and Schiappa diagonalized the Neumann matrices of superstring
field theory. In a recent paper [7] we diagonalized M ′, the bosonic Neumann matrix in the matter
sector including zero modes; the same work was done independently by Belov [8]. We found that
the spectrum of M ′ has the same continuous part as that of M , that is the interval [−1

3
, 0), plus one

doubly degenerate eigenvalue in the range (0, 1), whose value depends on the parameter b, defined
by a0 = 1

2

√
bp̂− 1√

b
ix̂.

The goal of this paper is to diagonalize the Neumann matrix M11 with zero modes in a nontrivial
B-field background. The form of the star-product in the presence of a B-field was already studied
in [9, 10, 11, 12, 13]. We will use here the formalism of Bonora, Mamone and Salizzoni [13] for the
Neumann matrix M11 with nonzero B-field, which we can easily cast into the form introduced by
Okuyama [3]. Therefore, it is merely an extension of our work [7] to give complete expressions for
the eigenvalues and eigenvectors of M11.

In short, our results are as follows: We turn on a B-field

(
0 B

−B 0

)
in two spatial directions.

First we find a scaling parameter ξ = 1 + (2πα′B)2, such that our continuous spectrum is [− 1
3ξ
, 0),

the same as that of M or M ′ but shrunk by ξ. Each eigenvalue in this interval is four times
degenerate (they are twice more degenerate than the eigenvalues of M ′ simply because we are
considering two spatial directions instead of a single one), except the point λ = − 1

3ξ
which is only

doubly degenerate when B 6= 0. Then we find two doubly degenerate discrete eigenvalues in the
range (0, 1

ξ
) (again the same range as for M ′ but shrunk by ξ). We give these two eigenvalues in

terms of roots of transcendental equations depending on b and B. When B = 0, these eigenvalues
are the same, whereas the role of turning on a B-field is just to split them and push one eigenvalue
towards 0 and the other one towards 1

ξ
(This is reminiscent of the Zeeman effect). Finally we give

analytical expressions for all the eigenvectors.

This paper is organized as follows. We begin with nomenclature and some review of the known
results in diagonalising the Neumann matrix, especially with the zero modes, in Section 2. Then
in Section 3 we proceed to the basic setup of diagonalising the matrix in the presence of a B-field
background. Here we reduce the problem to the solution of a 4× 4 linear system. We next address
the case of the continuous spectrum in Section 4. Thereafter we focus on the properties of the
determinant of the 4 × 4 system in Section 5 so as to obtain a discrete spectrum in Section 6.
To verify our analysis, we perform level truncation analysis in Section 7 and come to satisfying
agreement. We end with conclusions and prospects in Section 8.

2. Notations and Some Review of Known Results

In a previous work [7], we generalised the results of [1, 2, 3] in studying the spectrum of the Neumann

2



Matrix by including the zero mode. We recall that this is the matrix

M ′ :=

(
M ′

00 M
′
0m

M ′
n0 M

′
nm

)
=


 1 − 2

3
b
β

−2
3

√
2b
β

〈ve|
−2

3

√
2b
β

|ve〉 M + 4
3

(−|ve〉〈ve|+|vo〉〈v0|)
β


 ,

with

β := V rr
00 +

b

2
= ln

27

16
+
b

2
,

|ve〉 := E−1 |Ae〉
|vo〉 := E−1 |Ao〉 , Emn :=

√
nδmn

and
(Ae)n := 1+(−)n

2
An

(Ao)n := 1−(−)n

2
An,

s.t. (
1 + ix

1 − ix
)1/3 :=

∑

n=even

Anx
n + i

∑

n=odd

Anx
n.

Now we recall thatM ′ has a continuous spectrum in [−1/3, 0) with eigenvalueM(k) = − 1
1+2 cosh πk

2

,

with a pair of degenerate twist-even and twist-odd eigenvalues under the twist operator Cmn :=
(−1)mδmn. Moreover, M ′ has an isolated eigenvalue inside (0, 1) also with doubly degenerate eigen-
vectors.

We shall also adhere to the following definitions, as in [7]. All the vectors will ultimately be
written in the basis

|k〉 = (vk
1 , v

k
2 , v

k
3 , ...)

T

with the generating function

fk(z) =
+∞∑

n=1

vk
n√
n
zn =

1

k
(1 − e−k arctan z).

Defining |z〉 = (z, z2, z3, ...)T , and the inner product

〈z |k〉 ≡
+∞∑

n=1

znvk
n,

we have orthonormality and closure conditions:

〈k|p〉 = N (k)δ(k − p), N (k) :=
2

k
sinh(

πk

2
); 1 =

∫ +∞

−∞
dk

|k〉 〈k|
N (k)

.

Moreover under the twist action,

C |z〉 = |−z〉 , C |k〉 = − |−k〉 .

The |ve〉 and |vo〉 vectors above obey

〈k| ve〉 =
1

k

cosh(πk
2

) − 1

2 cosh(πk
2

) + 1
, 〈k| vo〉 =

√
3

k

sinh(πk
2

)

2 cosh(πk
2

) + 1

and
C |ve〉 = |ve〉 , C |vo〉 = − |vo〉 .

3



Finally, with the inner product the generating functions can be written as

fk(z) = 〈z|E−1 |k〉 = 〈k|E−1 |z〉 ,

and we define also

Ge(z) ≡ 〈z|E−1 1

λ−M
|ve〉 =

∫ +∞

−∞
dk

fk(z) 〈k| ve〉
N (k)(λ−M(k))

,

Go(z) ≡ 〈z|E−1 1

λ−M
|vo〉 =

∫ +∞

−∞
dk

fk(z) 〈k| vo〉
N (k)(λ−M(k))

,

whose explicit integrations were carried out in Equations (7.6) and (7.10) of [7].

2.1 The Presence of the Background B-Field

Now let us consider the presence of a background field Bαβ . We use the notation in [13]. The
authors define the following matrices

Gαβ = (
1

η + 2πα′B
η

1

η − 2πα′B
)αβ , θαβ = −(2πα′)2(

1

η + 2πα′B
B

1

η − 2πα′B
)αβ, (2.1)

where they have chosen the simplest but easily generalizable case of B non-vanishing in two direc-
tions αβ equaling to, say 24 and 25, and ηαβ is the flat metric in R2.

Adhering to their convention, we explicitly chose

Bαβ =

(
0 B

−B 0

)
, ηαβ =

(
1 0
0 1

)
. (2.2)

From (2.2) we can simplify (2.1) to

Gαβ =
1

ξ

(
1 0
0 1

)
, θαβ ≡ θǫαβ =

−(2πα′)2B

ξ

(
0 1
−1 0

)
, (2.3)

where we have defined

ξ = 1 + (2πα′B)2, θ =
−(2πα′)2B

ξ
.

These immediately give us

det(G) = ξ2, θ
√

det(G) = −(2πα′)2B.

For later usage and recalling β := V rr
00 + b

2
, we define two matrices

χrs =




0 1 −1
−1 0 1
1 −1 0


 , φrs =




1 −1
2
−1

2

−1
2

1 −1
2

−1
2
−1

2
1


 , (2.4)

4



as well as two parametres

Ω =
2β

4π4α′2B2 + 3β2
, Ξ =

i(πα′)2B

βξ
. (2.5)

We shall henceforth take α′ = 1.
Using these notations we can write the Neumann coefficients in the presence of the background

B-field [13]: First the vertex is

|V3〉 =
∫
d26p(1)d

26p(2)d
26p(3)δ

(26)(p(1) + p(2) + p(3)) exp(−E)|0, p〉123 , (2.6)

where E = E‖+E⊥ is split into a parallel part (for the directions in which B = 0) which is the same
as the vertex without B-field, and a perpendicular part (for the two spatial directions in which we
switched on the B-field) which depends on B; it can be written

E⊥ =
3∑

r,s=1


1

2

∑

m,n≥1

Gαβa
(r)α†
m V rs

mna
(s)β†
n +

∑

n≥1

Gαβp
α
(r)V

rs
0na

(s)β†
n +

1

2
Gαβp

α
(r)V

rs
00 p

β
(s) +

i

2

∑

r<s

p(r)
α θαβp

(s)
β


 .

(2.7)
Here we notice that if we don’t include the zero-modes in our analysis, (2.7) would simply reduce
to

3∑

r,s=1


1

2

∑

m,n≥1

Gαβa
(r)α†
m V rs

mna
(s)β†
n


 .

We thus see immediately, from the form of Gαβ = 1
ξ
ηαβ in (2.3), that in this case, the effect of B is

just to shrink the spectrum by ξ. We will thus include the zero-modes in our analysis. In this case,
we write the vertex |V3〉 = |V3,⊥〉⊗ |V3,‖〉, where |V3,‖〉 is the same as in the case without B-field and
|V3,⊥〉 = Ke−E|Ω〉 where |Ω〉 is annihilated by all am, m ≥ 0, K is some constant which depends on
b and B [13], and E is

E =
1

2

3∑

r,s=1

∑

m,n≥0

a(r)α†
m Vαβ,rs

mn a(s)β†
n ,

where1

Vαβ,rs
00 = Gαβδrs − Ωb(Gαβφrs + Ξǫαβχrs), (2.8)

Vαβ,rs
0n = Ω

√
b

3∑

t=1

(Gαβφrt + Ξǫαβχrt)V ts
0n, (2.9)

Vαβ,rs
mn = GαβV rs

mn − Ω
3∑

t,v=1

V rv
m0(G

αβφvt + Ξǫαβχvt)V ts
0n . (2.10)

These coefficients satisfy the properties

Vαβ,rs
mn = Vβα,sr

nm , Vαβ,rs
mn = Vαβ,(r+1)(s+1)

mn .
1In 2.10, we have used −Ω instead of Ω in [13] since when we set B = 0 we should get back to the zero B-field

case.
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To write these coefficients into a more compact form, we need to invoke from Appendix B [14]
the following forms for the Neumann Coefficients, rewritten in our basis:

V rr
n0 = −2

√
2

3
|ve〉 , V rr

0n = −2
√

2
3

〈ve| ,
V 21

n0 =
√

2
3
|ve〉 +

√
6

3
|vo〉 , V 12

0n =
√

2
3
〈ve| +

√
6

3
〈vo| ,

V 12
n0 =

√
2

3
|ve〉 −

√
6

3
|vo〉 , V 21

0n =
√

2
3
〈ve| −

√
6

3
〈vo| .

Substituting the above, (2.8), (2.9) and (2.10) simplify to

(Vαβ
mn)11 = Gαβ[V 11

mn − 2Ω(|ve〉 〈ve| + |vo〉 〈vo|)]

− 4√
3
ΩΞǫαβ [|ve〉 〈vo| − |vo〉 〈ve|],

(Vαβ
0n )11 = −

√
2bΩGαβ 〈ve| −

2
√

6b

3
ΩΞǫαβ 〈vo| ,

(Vαβ
n0 )11 = (Vβα

0n )11

= −
√

2bΩGαβ |ve〉 +
2
√

6b

3
ΩΞǫαβ |vo〉 ,

(Vαβ
00 )11 = Gαβ(1 − Ωb),

We can define two matrices

Γ :=

(
1 − Ωb −

√
2bΩ 〈ve|

−
√

2bΩ |ve〉 V 11 − 2Ω(|ve〉 〈ve| + |vo〉 〈vo|)

)

Σ :=


 0 −2

√
6b

3
ΩΞ 〈vo|

2
√

6b
3

ΩΞ |vo〉 − 4√
3
ΩΞ[|ve〉 〈vo| − |vo〉 〈ve|]


 (2.11)

to simplify things further.
Using (2.11) we can finally write down the Neumann coefficients (V)11 in the presence of the

B-Field into a 4 × 4 matrix form

(V)11 =

(
1
ξ
Γ Σ

−Σ 1
ξ
Γ

)
(2.12)

2.2 The Matrix of Our Concern: (M)11

Combining all of the notation above, the matrix we wish to diagonalize is (V)11 multiplied by the
twist operator C, i.e.,

(M)11 ≡ C(V)11 =

(
1
ξ
CΓ CΣ

−CΣ 1
ξ
CΓ

)
(2.13)

where

CΓ :=

(
1 − Ωb −

√
2bΩ 〈ve|

−
√

2bΩ |ve〉 M − 2Ω(|ve〉 〈ve| − |vo〉 〈vo|)

)

6



and

CΣ :=


 0 −2

√
6b

3
ΩΞ 〈vo|

−2
√

6b
3

ΩΞ |vo〉 − 4√
3
ΩΞ (|ve〉 〈vo| + |vo〉 〈ve|)


 .

Note that since Ξ from (2.5) is a purely imaginary number, (M)11 is Hermitian, so its eigenvalues
are real. It is the diagonalisation of this matrix (M)11 with which we shall concern ourselves in the
remainder of the paper.

3. Diagonalising (M)11: The Setup

Now we can solve the eigenvectors and eigenvalues, as what we did in [7], with the ansatz

v =




g1∫
dkh1(k) |k〉

g2∫
dkh2(k) |k〉




Acting on v by (2.13), we can write the eigen-equation into four parts as

λg1 =
1 − Ωb

ξ
g1 −

√
2bΩ

ξ
C(1)

e − 2
√

6b

3
ΩΞC(2)

o ,

∫ +∞

−∞
dkλh1(k) |k〉 = −

√
2bΩ

ξ
|ve〉 g1 +

∫ +∞

−∞
dk
M(k)

ξ
h1(k) |k〉 −

2Ω

ξ
[|ve〉 C(1)

e − |vo〉 C(1)
o ]

− 2
√

6b

3
ΩΞ |vo〉 g2 −

4√
3
ΩΞ[|ve〉 C(2)

o + |vo〉 C(2)
e ],

λg2 =
2
√

6b

3
ΩΞC(1)

o +
1 − Ωb

ξ
g2 −

√
2bΩ

ξ
C(2)

e ,

∫ +∞

−∞
dkλh2(k) |k〉 =

2
√

6b

3
ΩΞ |vo〉 g1 +

4√
3
ΩΞ[|ve〉 C(1)

o + |vo〉 C(1)
e ] −

√
2bΩ

ξ
|ve〉 g2

+
∫ +∞

−∞
dk
M(k)

ξ
h2(k) |k〉 −

2Ω

ξ
[|ve〉 C(2)

e − |vo〉 C(2)
o ] (3.1)

where we have defined

C(1)
e =

∫ +∞

−∞
dkh1(k) 〈ve| k〉,

C(1)
o =

∫ +∞

−∞
dkh1(k)〈vo|k〉,

C(2)
e =

∫ +∞

−∞
dkh2(k) 〈ve| k〉,

C(2)
o =

∫ +∞

−∞
dkh2(k)〈vo|k〉.

7



Now we solve g1, g2 from the first and third equations of (3.1):

g1 = [−
√

2bΩ

ξ
C(1)

e − 2
√

6b

3
ΩΞC(2)

o ]/(λ− 1 − Ωb

ξ
),

g2 = [
2
√

6b

3
ΩΞC(1)

o −
√

2bΩ

ξ
C(2)

e ]/(λ− 1 − Ωb

ξ
).

Putting these back into the second and fourth equations of (3.1) we obtain

∫ +∞

−∞
dkh1(k) |k〉 [λ− M(k)

ξ
] = |ve〉 [C(1)

e dee + C(2)
o doe] + |vo〉 [C(1)

o doo + C(2)
e doe]

∫ +∞

−∞
dkh2(k) |k〉 [λ− M(k)

ξ
] = |vo〉 [C(2)

o doo − C(1)
e doe] + |ve〉 [C(2)

e dee − C(1)
o doe], (3.2)

where to simplify notation, we have defined

dee = − 2Ω(ξλ− 1)

ξ(ξλ− 1 + Ωb)
,

doo =
−2Ω

3ξ
[−3 +

4bΩΞ2ξ2

ξλ− 1 + Ωb
],

doe = − 4ΩΞ(ξλ− 1)√
3(ξλ− 1 + Ωb)

.

We note that dee, doo are reals while doe is purely imaginary.

We can expand |ve〉 , |vo〉 as in (4.7) of [7]

|ve〉 =
∫ +∞

−∞
dk |k〉 〈k| ve〉

N (k)
, |vo〉 =

∫ +∞

−∞
dk |k〉 〈k| vo〉

N (k)
.

Subsequently, (3.2) can be re-written as2

h1(k) =
1

λ− M(k)
ξ

[
〈k|ve〉
N (k)

(deeC(1)
e + doeC(2)

o ) +
〈k|vo〉
N (k)

(dooC(1)
o + doeC(2)

e ) + δ(k − k1)r1(k)],

h2(k) =
1

λ− M(k)
ξ

[
〈k|ve〉
N (k)

(deeC(2)
e − doeC(1)

o ) +
〈k|vo〉
N (k)

(dooC(2)
o − doeC(1)

e ) + δ(k − k2)r2(k)] (3.3)

2The term 1

λ−
M(k)

ξ

is not very well defined when we write it in this form. However, the only physically meaningful

quantity is the expression
∫

dkh(k) |k〉. When we perform the integration, as what we did in the generating function,
we should choose the principal-value integration. This fixes the definition. We want to thank Dmitri Belov for
discussing with us about this point.
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with yet undetermined parameters k1, k2 and functions r1(k), r2(k) with zeros respectively at k1, k2.
Again, as in [7], we define

Aee(λ) =
∫ +∞

−∞
dk

〈k| ve〉〈ve |k〉
N (k)(λ− M(k)

ξ
)

= 〈ve|
1

λ− M
ξ

|ve〉 ,

Aeo(λ) =
∫ +∞

−∞
dk

〈k| vo〉〈ve |k〉
N (k)(λ− M(k)

ξ
)

= 〈ve|
1

λ− M
ξ

|vo〉 = 0,

Aoo(λ) =
∫ +∞

−∞
dk

〈k| vo〉〈vo |k〉
N (k)(λ− M(k)

ξ
)

= 〈vo|
1

λ− M
ξ

|vo〉 ,

B(1)
e (λ) =

∫ +∞

−∞
dk
δ(k − k1)r1(k)〈ve |k〉

λ− M(k)
ξ

,

B(1)
o (λ) =

∫ +∞

−∞
dk
δ(k − k1)r1(k)〈vo |k〉

λ− M(k)
ξ

,

B(2)
e (λ) =

∫ +∞

−∞
dk
δ(k − k2)r2(k)〈ve |k〉

λ− M(k)
ξ

,

B(2)
o (λ) =

∫ +∞

−∞
dk
δ(k − k2)r2(k)〈vo |k〉

λ− M(k)
ξ

. (3.4)

Finally, we can write the eigen-equation (3.1) we wish to solve into matrix form:



1 − deeAee 0 0 −doeAee

0 1 − dooAoo −doeAoo 0
0 doeAee 1 − deeAee 0

doeAoo 0 0 1 − dooAoo







C(1)
e

C(1)
o

C(2)
e

C(2)
o


 =




B(1)
e

B(1)
o

B(2)
e

B(2)
o


 . (3.5)

To solve this equation we need to consider the determinant Det of the 4 × 4 matrix in (3.5). We
will leave this discussion to section 5. For now let us address the case when Det 6= 0 so that we can
invert (3.5); this gives us the continuous spectrum.

4. The Continuous Spectrum

As we will see from Section 5, only a few λ’s make the determinant zero. For other λ, the determinant
is non-zero and we can invert to solve C’s. Just as what we did in [7], to get the nonzero solution,
λ must be in the region 1

ξ
[−1/3, 0). This is what is going to give us the continuous spectrum.

4.1 The Continuous Eigenvalues

To see the above discussion more clearly, let us write down the explicit form of Be from (3.4):

B(1)
e =

∫ +∞

−∞
dk

1

k

cosh(πk
2

) − 1

2 cosh(πk
2

) + 1

δ(k − k1)r1(k)

λ− M(k)
ξ

,

9



Since r1(k1) = 0, the above integration will be zero unless the denominator λ− M(k)
ξ

also has a zero
at k = k1:

λ− M(k1)

ξ
= 0 .

Because M(k1) ∈ [−1/3, 0) for any k1, we know immediately that we have a continuous spectrum
for any

λ =
M(k)

ξ
∈ 1

ξ
[−1/3, 0); (4.1)

this is our continuous eigenvalue. Comparing with the result in [7] we see that in the background
of B, the continuous spectrum is simply scaled by a factor of 1

ξ
.

4.2 The Continuous Eigenvectors

Now let us construct the eigenvector for the given λ from (4.1) but not equal to −1
3ξ

. We will consider
this special point in Subsection 4.3.

Now let us set

λ =
M(k0)

ξ
= −1

ξ

1

1 + 2 cosh πk0

2

(4.2)

for our eigenvalue from (4.1). we expand λ−M(k)/ξ around k0 as

λ− M(k)

ξ
=

1

ξ
[M(k0) −M(k)] =

1

ξ
[−dM

dk
|k0

(k − k0) −
1

2

d2M

dk2
|k0

(k − k0)
2 + ....]

=
1

ξ
[− π sinh πk0

2

(1 + 2 cosh πk0

2
)2

(k − k0) −
1

2

π2 + π2

2
cosh πk0

2
− π2 sinh2 πk0

2

(1 + 2 cosh πk0

2
)3

(k − k0)
2 + ....]

Recall that we have two independent pairs of parameters (k1, r1(k)) and (k2, r2(k)) with ri(ki) = 0.
We freely choose3 k1 = k2 = k0, r1(k) = D1 · (k − k0) and r1(k) = D2 · (k − k0), where Di=1,2 are
arbitrary constants. Then we have

B(1)
e = −ξD1(cosh(πk0

2
) − 1)(2 cosh(πk0

2
) + 1)

πk0 sinh πk0

2

:= Be,k0
D1,

B(1)
o = −

√
3
ξD1(2 cosh(πk0

2
) + 1)

πk0
:= Bo,k0

D1,

B(2)
e = −ξD2(cosh(πk0

2
) − 1)(2 cosh(πk0

2
) + 1)

πk0 sinh πk0

2

:= Be,k0
D2,

B(2)
o = −

√
3
ξD2(2 cosh(πk0

2
) + 1)

πk0
:= Bo,k0

D2. (4.3)

3Here we choose k1 = k2 = k0 for convenience. We can equally choose k1 = k0, k2 = −k0. However, it is easy to
see that the final result is same.
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From this we can solve




C(1)
e

C(1)
o

C(2)
e

C(2)
o


 =

1

∆




(1 − dooAoo)B
(1)
e + doeAeeB

(2)
o

(1 − deeAee)B
(1)
o + doeAooB

(2)
e

−doeAeeB
(1)
o + (1 − dooAoo)B

(2)
e

−doeAooB
(1)
e + (1 − deeAee)B

(2)
o




=
D1

∆




(1 − dooAoo)Be,k0

(1 − deeAee)Bo,k0

−doeAeeBo,k0

−doeAooBe,k0


+

D2

∆




doeAeeBo,k0

doeAooBe,k0

(1 − dooAoo)Be,k0

(1 − deeAee)Bo,k0




where we have defined
∆ := (1 − deeAee)(1 − dooAoo) + d2

oeAeeAoo

so that ∆2 = Det.
Now recalling that we can solve the hi from (3.3) from the C’s and the gi as well; whence

substituting back into (3.1), we obtain the eigenvector. We see that the general solutions are just
the linear combinations of the D1 and D2 terms:

v(k0) =
D1

∆




−
√

2bΩ
(λξ−1+Ωb)

(1 − dooAoo)Be,k0
+ 2

√
6bΩΞξ

3(λξ−1+Ωb)
doeAooBe,k0

Be,k0
(dee−(deedoo+d2

oe)Aoo)

λ−M
ξ

|ve〉 +
Bo,k0

(doo−(deedoo+d2
oe)Aee)

λ−M
ξ

|vo〉 − ξ∆
dM
dk

|k0

|k0〉

2
√

6bΩΞξ
3(λξ−1+Ωb)

(1 − deeAee)Bo,k0
+

√
2bΩ

(λξ−1+Ωb)
doeAeeBo,k0

−doeBo,k0

λ−M
ξ

|ve〉 +
−doeBe,k0

λ−M
ξ

|vo〉




+

+
D2

∆




−
√

2bΩ
(λξ−1+Ωb)

doeAeeBo,k0
− 2

√
6bΩΞξ

3(λξ−1+Ωb)
(1 − deeAee)Bo,k0

doeBo,k0

λ−M
ξ

|ve〉 +
doeBe,k0

λ−M
ξ

|vo〉

2
√

6bΩΞξ
3(λξ−1+Ωb)

doeAooBe,k0
−

√
2bΩ

(λξ−1+Ωb)
(1 − dooAoo)Be,k0

Be,k0
(dee−(deedoo+d2

oe)Aoo)

λ−M
ξ

|ve〉 +
Bo,k0

(doo−(deedoo+d2
oe)Aee)

λ−M
ξ

|vo〉 − ξ∆
dM
dk

|k0

|k0〉




Since for a given λ there are two corresponding k-values in solving (4.2), viz., k0 and −k0, we
get two degenerate states v(k0), v(−k0) (in fact, the degeneracy is four because for each we have
one corresponding to D1 and another to D2). Using

Be,k0
= Be,−k0

, Bo,k0
= −Bo,−k0

,
dM

dk
|k0

= −dM
dk

|−k0
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we can write the eigenstates which are even and odd with respect to k0:

v1,λ =
v(k0) + v(−k0)

2
=
D1

∆




−
√

2bΩ
(λξ−1+Ωb)

(1 − dooAoo)Be,k0
+ 2

√
6bΩΞξ

3(λξ−1+Ωb)
doeAooBe,k0

Be,k0
(dee−(deedoo+d2

oe)Aoo)

λ−M
ξ

|ve〉 − ξ∆

2 dM
dk

|k0

(|k0〉 − |−k0〉)

0

−doeBe,k0

λ−M
ξ

|vo〉




+
D2

∆




0

doeBe,k0

λ−M
ξ

|vo〉

2
√

6bΩΞξ
3(λξ−1+Ωb)

doeAooBe,k0
−

√
2bΩ

(λξ−1+Ωb)
(1 − dooAoo)Be,k0

Be,k0
(dee−(deedoo+d2

oe)Aoo)

λ−M
ξ

|ve〉 − ξ∆

2 dM
dk

|k0

(|k0〉 − |−k0〉)




≡ D1

∆
ve
1,λ +

D2

∆
vo
1,λ (4.4)

and

v2,λ =
v(k0) − v(−k0)

2
=
D1

∆




0

Bo,k0
(doo−(deedoo+d2

oe)Aee)

λ−M
ξ

|vo〉 − ξ∆

2 dM
dk

|k0

(|k0〉 + |−k0〉)

2
√

6bΩΞξ
3(λξ−1+Ωb)

(1 − deeAee)Bo,k0
+

√
2bΩ

(λξ−1+Ωb)
doeAeeBo,k0

−doeBo,k0

λ−M
ξ

|ve〉




+
D2

∆




−
√

2bΩ
(λξ−1+Ωb)

doeAeeBo,k0
− 2

√
6bΩΞξ

3(λξ−1+Ωb)
(1 − deeAee)Bo,k0

doeBo,k0

λ−M
ξ

|ve〉

0

Bo,k0
(doo−(deedoo+d2

oe)Aee)

λ−M
ξ

|vo〉 − ξ∆

2 dM
dk

|k0

(|k0〉 + |−k0〉)




≡ D1

∆
vo
2,λ +

D2

∆
ve
2,λ . (4.5)
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However, we see that vi,λ are neither twist-even nor twist-odd under the C-operator. The twist-
even (odd) states in the first direction of our 2-dimensions chosen for the B-field are mixed with
the twist-odd (even) states in the second direction. This behaviour is of course a result of turning
on the background B-field.

4.3 The Special Case of λ = −1/(3ξ)

Now, as promised, we discuss the special case of λ = −1/(3ξ) which was excluded from the above.
For general B 6= 0, λ = −1/(3ξ) does not make the determinant zero. Then we can solve the
equation as before and find the coefficients C and subsequently the eigenvector.

However, one thing is special for this point: this is that dM
dk

|k0=0 when k0 = 0. In another words,
we should choose r(k) = D · k2 instead of the linear r(k) = D · (k − k0). Under such a choice, we
have Be,0 = 0 and Bo,0 = −6

√
3ξ/π. So the solution is

v(k0) =
ξD1

∆




0
Bo,0(doo−(deedoo+d2

oe)Aee)
−1/3−M

|vo〉 − 36∆
π2 |0〉

2
√

6bΩΞξ
3ξ(λξ−1+Ωb)

(1 − deeAee)Bo,0 +
√

2bΩ
ξ(λξ−1+Ωb)

doeAeeBo,0
−doeBo,0

−1/3−M
|ve〉




+

+
ξD2

∆




−
√

2bΩ
ξ(λξ−1+Ωb)

doeAeeBo,0 − 2
√

6bΩΞξ
3ξ(λξ−1+Ωb)

(1 − deeAee)Bo,0

doeBo,0

−1/3−M
|ve〉

0
Bo,0(doo−(deedoo+d2

oe)Aee)
−1/3−M

|vo〉 − 36∆
π2 |0〉




.

Now at k0 = 0 we get only two independent eigenvectors instead of the four as discussed at
the end of the last subsection. This may seem a little surprising because when B = 0, we do have
four eigenvectors (since we have two spatial directions instead of one in [7]: two of v+,− 1

3
and two of

v−,− 1
3
). However, after a careful analysis we see that the two eigenvectors v+,− 1

3
arise because when

B = 0, λ = −1/3 gives zero determinant. But this is not the case here and we thus lose these two
vectors. More concretely, every point λ in the continuous region which makes the determinant zero
will kill two eigenvectors while adding another two eigenvectors. At B = 0 case, the eigenvectors
which should be killed are not there, so the net effect is to add two more eigenvectors.

5. The Determinant

Having addressed the continuous, let us proceed with the discrete spectrum. This corresponds to
the few cases when Det becomes zero. Therefore in this section we shall determine the roots of
Det. We see that the determinant Det can be written as

Det(λ) = [(1 − deeAee)(1 − dooAoo) + d2
oeAeeAoo]

2, (5.1)

so that any root λ of Det will always be at least a double-root.
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Now we have the evaluations of all the pieces ofDet from [7]; the reader is referred to the sections
on Aee and Aoo therein. Using these results from equations (5.1) and the one at the beginning of
subsection 5.2 in cit. ibid., we have the following analytic expressions for Det. We have set x := ξλ.
Then for −1

3
≤ x < 0,

Det =

(
b2 (1 + 3 x) + 4 b (−1 + 3 x) log(

27

16
) + 4 (−1 + x)

(
4B2 π4 + 3 log(

27

16
)
2
))−2

×
{
b2 (1 + 3 x) − 4 b (1 + 3 x) (2 γ + f(x) + log(16))+

4
(
4B2 π4 (−1 + x) + 4 γ2 (1 + 3 x) + f(x)2 (1 + 3 x) + 16 (1 + 3 x) log(2)2+

8 f(x) (log(2) + x log(8)) + 4 γ (1 + 3 x) (f(x) + log(16)))}2

(5.2)

where γ is the Euler constant,

f(x) := ψ(g(x)) + ψ(−g(x)), g(x) :=
i

2π
arcsech

(
− 2x

1 + x

)
,

and ψ(x) is the digamma function. From this expression, we see immediately two results: (1) When
B = 0, x = −1/3 makes the determinant zero; (2) When B 6= 0, x = −1/3 is not a root of the
determinant. This shows that when B 6= 0, the point at x = −1/3 has a different behavior.

On the other hand for x not in the region, viz., x < −1
3

or x ≥ 0, we have the form of Det as
in (5.2), but with f(x) replaced by

h(x) := ψ(−g(x)) + ψ(1 + g(x)).

5.1 Zeros of Det Between −1/3 and 0

We observe from (5.2), thatDet inside [−1
3
, 0) is actually an algebraic equation in the transcendental

function f(x) and x. Therefore we can solve Det = 0 by bringing it into the form where one side
is f(x) and the other, an algebraic function of x (i.e., by solving for f(x)); this gives us

2f(x) =
∓4B π2

√
1 − x

√
1 + 3 x− (1 + 3 x) (−b+ 4 γ + log(256))

1 + 3x
. (5.3)

As an immediate check we can see that when B → 0, x = −1/3 is a solution; this is of course in
perfect agreement with the case seen in [7]. Now for nonzero values of B, x = −1/3 is no longer a
solution. In the interior region when x 6= −1/3, we can safely cancel the (1 + 3x) factor and the
right-hand side simply becomes a (square-root) hyperbola whose size is governed by B and whose
position is shifted by b, i.e.,

2f(x) = ∓4Bπ2

√
1 − x

1 + 3x
− (−b+ 4γ + 8 log 2) (5.4)

Now we have 2 cases, the one with the minus sign in front of B in (5.3) and the other, with a plus
sign.
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Case 1: 2f(x) = −4(γ + log 4) + b− 4 B π2
√

1−x√
1+3 x

Let us examine the left graph in Figure 1. Indeed for sufficiently small b the RHS drops below the
left and there are no solution. At a critical value b0(B), the two curves touch at a single point (and
no more because the LHS is an increasing function whose derivative is also increasing while the
RHS is an increasing function whose derivative is decreasing.) Above this critical point, there will
always be two solutions, which is the case we have drawn in the plot. To find the critical point we
equate the derivatives of both sides which gives

−i(1 + 3x)

8π3x
(ψ′(g(x)) − ψ′(−g(x))) = B

From this equation we can solve x0(B) as a function of B. Then we can find the critical value b0(B)
by substituting back into the original intersection problem to yield

2f(x0(B)) = −4(γ + log 4) + b−
4B π2

√
1 − x0(B)

√
1 + 3 x0(B)

.

The solution of this transcendental equation is then the critical value b0(B) which we seek.

Case 2: 2f(x) = −4(γ + log 4) + b+ 4 B π2
√

1−x√
1+3 x

For the other solution with + in front of B we refer to the right plot of Figure 1. Here the situation
is easier. The RHS is always a decreasing function so there is always a solution between −1/3 and
0.

-0.3 -0.25 -0.2 -0.15 -0.1 -0.05

-10

-5

5

-0.1 -0.08 -0.06 -0.04 -0.02

-2

2

4

Figure 1: The intersection showing the roots of Det inside the region x ∈ (−1/3, 0). The (red) convex
ascending curve in both cases is that of 2f(x). In the graph to the left, we have chosen b = 11.2, B = 0.1

and have shown a typical intersection of 2f(x) with the (blue) −4(γ + log 4) + b− 4 B π2
√

1−x√
1+3 x

. There could

be 0, 1 or 2 points of intersection depending on the shift parametre b; the case shown is with 2 points
of intersection. On the graph to the right, we have chosen b = 2, B = 0.1 and the (blue) curve is now

−4(γ + log 4) + b + 4 B π2
√

1−x√
1+3 x

. There is always 1 point of intersection.
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5.1.1 Comparison Between the B = 0 and B 6= 0 Cases

Now let us compare the roots found here with the ones found in [7] for the case B = 0. There the

determinant is reduced to the diagonal form

∣∣∣∣∣
1 − deeAee 0
0 1 − dooAoo

∣∣∣∣∣. It has a root at λ = −1/3

where 1 − deeAee = 0 but 1 − dooAoo 6= 0. Furthermore, there is a critical value b0 = 8 log 2, above
which we have doubly degenerate roots where both 1 − deeAee = 0 and 1 − dooAoo = 0.

In our general B 6= 0 case here. Firstly we have a root in the case 2 above no matter what b is.
This root obviously corresponds to λ = −1/3 at B = 0. Secondly, there is a critical value b0(B),
above which we have two roots. These two roots obviously correspond to the doubly degenerate
roots when B = 0. Therefore, we observe that when B 6= 0 the doubly degenerate roots are split
(Zeeman effect). This will be a general picture which we will meet again when we discuss the root
in the region (0, 1).

5.2 Zeros of Det between 0 and 1

We recall the form of Det from (5.2). Here as in the previous subsection we reduce the problem of
finding its zeros to the intersection of a transcendental function with an algebraic one:

2h(x) = b∓ 4B π2
√

1 − x√
1 + 3 x

− 4 (γ + log(4)) (5.5)

We see immediately that for x /∈ [0, 1], the function h(x) is real while the RHS is complex (with
non-vanishing imaginary part) whence there are no solutions there. We therefore focus on the
solutions between 0 and 1 where both sides become real. Again we must analyse the minus and the
plus cases.

Case 1: 2h(x) = b− 4 B π2
√

1−x√
1+3 x

− 4 (γ + log(4))

In the region (0, 1], the LHS is a monotonically decreasing function while the RHS, a monotonically
increasing one. At the endpoint x = 1, the RHS equals b−4(γ+log 4) and the LHS is −4(γ+log 4).
Therefore at the lower limit of b = 0 there is a solution at x = 1. For any other value of positive
b, the RHS gets shifted upwards and there will always be a solution. The situation is illustrated in
the left part of Figure 2.

Case 2: 2h(x) = b+ 4 B π2
√

1−x√
1+3 x

− 4 (γ + log(4))

Now in the interesting region both functions are monotonically decreasing, but the LHS, from ∞
and the RHS, from a finite value. Once again if b = 0 there is an intersection at x = 1, but now
there is another point of intersection in (0, 1). For positive b however, the x = 1 endpoints no longer
meet but the intersection at another point in between still exists.

Let us compare to the case of B = 0 in [7] again. There, we had doubly degenerate roots in
(0, 1). Here for general B 6= 0, we have two roots which are not degenerate. It is obvious that
these two roots here correspond to the two doubly degenerate roots at B = 0 and B 6= 0 lifts the
degeneracy and splits the roots (Zeeman effect). The bigger the value of B the further they split.
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Figure 2: The intersection showing the roots of Det inside the region x ∈ (0, 1]. The (red) convex
descending curve in both cases is that of 2h(x). In the graph to the left, we have chosen b = 1, B = 0.1 and

have shown a typical intersection of 2f(x) with the (blue) b− 4 B π2
√

1−x√
1+3 x

− 4 (γ + log(4)). There is always

1 point of intersection. On the graph to the right, we have chosen the limiting case b = 0, B = 0.1 and

the (red) curve is now b + 4 B π2
√

1−x√
1+3 x

− 4 (γ + log(4)). There is always 1 point of intersection in between

and here there is another at the endpoint x = 1. For any other value of b, x = 1 would no longer be an
intersection point.

6. The Discrete Spectrum

Having addressed the case of the continuous spectrum corresponding to Det 6= 0 in the preceding
section, here we focus on the case when λ makes Det zero. This will give us a Discrete Spectrum.

6.1 The Region 1
ξ
(0, 1)

As we have seen before in this region, there are two values λ = λ1,2 making Det = 0. For both
these values, doeAee and doeAoo are nonzero because they are zero only when B = 0 or λ = 1

ξ
.

Furthermore, since λ ∈ 1
ξ
(0, 1), λ− M(k)

ξ
can not have a zero to cancel the ones from r1(k) and r2(k)

in (3.4) and we get

B(1)
e = B(1)

o = B(2)
e = B(2)

o = 0.

This must indeed be so for (3.5) to have solutions for Det = 0.

Now we can solve the C’s, which must be in the nullspace of the 4 × 4 matrix in (3.5); we find
two independent vectors:




C(1)
e

C(1)
o

C(2)
e

C(2)
o


 = D1




doeAee

0
0
1 − deeAee


+D2




0
1 − deeAee

−doeAee

0



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Substituting this back into (3.3) and (3.1) as was done before, we have:

v = D1




− 2
√

6bΩΞξ
3(λξ−1+Ωb)

doe

λ−M
ξ

|ve〉
0
doo−Aee(doodee+d2

oe)

λ−M
ξ

|vo〉




+D2




0
doo−Aee(doodee+d2

oe)

λ−M
ξ

|vo〉
2
√

6bΩΞξ
3(λξ−1+Ωb)

− doe

λ−M
ξ

|ve〉




(6.1)

where λ = λ1,2, the two solutions of Det in 1
ξ
(0, 1) given in the previous section.

6.2 The Region 1
ξ
[−1/3, 0)

When λ ∈ 1
ξ
[−1/3, 0) makes Det zero, things become a little more complex since in this case, we

can choose the parameters k1, k2, r1(k), r2(k) properly to have nonzero B(1,2)
e,o . This opens a door to

new solutions. Let us discuss it in more detail. First, we choose the parameters such that B(1,2)
e,o = 0.

In this case, we have two solutions given by the same form as (6.1).
We need two more solutions and they can be found by choosing nonzero values of B(1,2)

e,o 6= 0.
Let us discuss this case in more detail. To find these two more solutions we need to generalize our
method a little bit. The idea is that when we had

∫
dkf(k) |k〉 = 0 before, in general we should

require
f(k) =

∑

ki

δ(k − ki)ri(k), ri(ki) = 0.

Since the equation is linear, if we find a single solution, we can get the general one by linear
combination. This method works well for the analysis in the previous sections. However, in the
case at hand, such a simplification does not work. Let us explain a little bit. Assume there is
a solution for k1 = k2 = k0, r1(k) = D1(k − k0) and r2(k) = D2(k − k0) with λ = M(k0)/ξ.
Consistency requires that

doeAee

1 − dooAoo
= −Be,k0

D1

Bo,k0
D2

=
Be,k0

D2

Bo,k0
D1

, ⇒ D2
1 = −D2

2

which have solutions only when D1 = ±iD2 and are perfectly consistent since doe is a purely
imaginary number. Now the crucial thing is to check if

doeAee

1 − dooAoo
= −iBe,k0

B0,k0

or
doeAee

1 − dooAoo
= i

Be,k0

B0,k0

for the given λ which makes Det = 0. We do not have an analytic proof to show this is not true,
but it is easy to check numerically and was found that it indeed does not hold. In other words, if
we keep only a single term we do not have any solution.

In our case, the generalization is obvious: we just replace δ(k − k1)r1(k) by δ(k − k1)r1(k) +
δ(k + k1)r̃1(k). This then modifies (3.5) to




1 − deeAee 0 0 −doeAee

0 1 − dooAoo −doeAoo 0
0 doeAee 1 − deeAee 0

doeAoo 0 0 1 − dooAoo







C(1)
e

C(1)
o

C(2)
e

C(2)
o


 =




Be,k0
D1 +Be,−k0

D̃1

Bo,k0
D1 +Bo,−k0

D̃1

Be,k0
D2 +Be,−k0

D̃2

Bo,k0
D2 +Bo,−k0

D̃2



. (6.2)
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Now consistency requires

doeAee

1 − dooAoo
= −Be,k0

D1 +Be,−k0
D̃1

Bo,k0
D2 +Bo,−k0

D̃2

=
Be,k0

D2 +Be,−k0
D̃2

Bo,k0
D1 +Bo,−k0

D̃1

.

Using Be,k0
= Be,−k0

and Bo,k0
= Bo,−k0

we can solve

D2 =
1

2
[(ρ− 1

ρ
)D1 − (ρ+

1

ρ
)D̃1], D̃2 =

1

2
[(ρ− 1

ρ
)D1 − (ρ− 1

ρ
)D̃1],

where we have defined ρ = doeAee

1−dooAoo

Bo,k0

Be,k0

. Notice that we have two independent parameters D1, D̃1

which give us the missing two eigenstates. However, the most convenient way is to choose

Di;+ = Di + D̃i, Di;− = Di − D̃i.

Then (6.2) becomes



1 − deeAee 0 0 −doeAee

0 1 − dooAoo −doeAoo 0
0 doeAee 1 − deeAee 0

doeAoo 0 0 1 − dooAoo







C(1)
e

C(1)
o

C(2)
e

C(2)
o


 =




D1,+Be,k0

D1,−Bo,k0

ρD1,−Be,k0

−1
ρ
D1,+Bo,k0



,

from which we have two solutions



C(1)
e

C(1)
o

C(2)
e

C(2)
o


 =




0
0
0

−D1,+Be,k0

doeAee



,




C(1)
e

C(1)
o

C(2)
e

C(2)
o


 =




0
ρD1,−Be,k0

doeAee

0
0



. (6.3)

Our final eigenvectors then become

v+ =




−
√

2bξ
2(λξ−1)

Be,k0
D1,+

Aee

− Be,k0
D1,+

Aee(λ−M
ξ

)
|ve〉 − ξD1,+

2 dM
dk

|k0

(|k0〉 − |−k0〉)

0

− dooBe,k0
D1,+

doeAee(λ−M
ξ

)
|vo〉 +

ξ 1
ρ
D1,+

2 dM
dk

|k0

(|k0〉 + |−k0〉)




(6.4)

and

v− =




0

ρdooBe,k0
D1,−

doeAee(λ−M
ξ

)
|vo〉 − ξD1,−

2 dM
dk

|k0

(|k0〉 + |−k0〉)

−ρ
√

2bξ
2(λξ−1)

Be,k0
D1,−

Aee

−ρBe,k0
D1,−

Aee(λ−M
ξ

)
|ve〉 − ξρD1,−

2 dM
dk

|k0

(|k0〉 − |−k0〉)




. (6.5)
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7. Level truncation analysis

Here we want to compare some of our predictions with the results of level truncation. First, we
do observe a continuous spectrum in the range ξ−1[−1

3
, 0). Next, we want to check our analytical

expressions for the eigenvalues in the interval (0, ξ−1). For this, we show in the following table these
rescaled eigenvalues ξλ1 and ξλ2 (defined such that λ1 ≤ λ2), for b = 1 and for various values of B,
to levels 5, 20 and 100. We compare these results to the exact values calculated from (5.5), shown
in the last column.

Level 5 Level 20 Level 100 Exact value

ξλ1(B = 0.001) 0.394832 0.397808 0.397969 0.397976
ξλ2(B = 0.001) 0.408028 0.410125 0.410283 0.41029

ξλ1(B = 0.01) 0.340706 0.343376 0.343537 0.343544
ξλ2(B = 0.01) 0.463391 0.465736 0.465892 0.465899

ξλ1(B = 0.1) 0.0353826 0.036406 0.0364938 0.0364979
ξλ2(B = 0.1) 0.83877 0.839611 0.839684 0.839688

ξλ1(B = 0.5) −0.000444917 −3.03731 · 10−15 7.39318 · 10−18 4.08988 · 10−69

ξλ2(B = 0.5) 0.989926 0.98998 0.989986 0.989986

We see a remarkable agreement between the level truncation and our analytical values. As was
already observed in [7], level truncation converges very fast for the isolated eigenvalues.

This also illustrates our discussion in section 5.2 on how turning on a B-field breaks the degen-
eracy between λ1 and λ2. Indeed we see that ξλ2 goes to one as B is increased, whereas ξλ1 goes
to zero. This last convergence being very fast, as can be measured from the asymptotic expansions
of our analytical expressions [7].

Next we want to check our formulas (4.4) and (4.5)4 for the eigenvectors in the continuous
spectrum ve

1,λ, v
o
1,λ, v

o
2,λ and ve

2,λ. Here some care is needed: Due to the block-matrix form (2.13) of
(M)11, its eigenvalues in the level truncation will always be twice exactly degenerate; indeed if (in

block notation)

(
a
b

)
is an eigenvector, then so is

(
b
−a

)
. This degeneracy is undesirable because the

numerical algorithm which finds the level-truncated eigenvectors will, for each eigenvalue, give two
eigenvectors which will be in a mixed state. In other words, for some eigenvalue λ, the algorithm will
output two vectors w1 = a1v

e
1,λ +a2v

o
1,λ +a3v

o
2,λ +a4v

e
2,λ and w2 = b1v

e
1,λ + b2v

o
1,λ + b3v

o
2,λ + b4v

e
2,λ, and

we will have no control on the parameters ai and bi. We can remedy5 to this by artificially breaking

this degeneracy in the following way: We consider (M)11
ǫ ≡ (M)11 + ǫJ , where J ≡

(
1 0
0 −1

)
,

and ǫ is a small number (we will typically choose ǫ = 10−7. We observe that adding this small
perturbation to (M)11 breaks the degeneracy in the level truncation. moreover, J commutes with

4The vectors (λ − M/ξ)
−1 |ve,o〉 can be calculated from our formulas for the generating functions written down

in [7]
5The reader might wonder why we don’t simply check our exact eigenvectors by multiplying them by the level

truncated (M)11. The problem is that this procedure does not give very good results in the level truncation.
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(
C 0
0 −C

)
, we thus expect the level-truncated eigenvectors to be of the form

(
even
odd

)
which we will

call even, or

(
odd
even

)
which we will call odd. If we further constraint all eigenvectors to be of the

form

(
real

imaginary

)
, we expect the even level-truncated eigenvectors we

λ to be close to some linear

combination a1v
e
1,λ + a2v

e
2,λ with a1 and a2 being real parameters. Similarly, we expect the odd

level-truncated eigenvectors wo
λ to be close to some linear combination a1v

o
1,λ + a2v

o
2,λ.

In the next tables, we consider 4 eigenvectors of the level-truncated matrix (M)11
ǫ with b = 1,

B = 0.2, ǫ = 10−7 and we work at level L = 100. We find the parameters a1 and a2 by minimizing

err(a1, a2) =

(∑5
i=0 |(a1v

e,o
1,λ + a2v

e,o
2,λ − we,o

λ )i|2 +
∑L+6

i=L+1 |(a1v
e,o
1,λ + a2v

e,o
2,λ − we,o

λ )i|2
) 1

2

‖a1v
e,o
1,λ + a2v

e,o
2,λ‖

,

where we have chosen, for simplicity, to compare only the 6 first components of the upper block
and the 6 first components of the lower block (remember that each block has size L+ 1). Also, all
the vectors appearing in the above formula are normalized to unit norm before being plugged in
the formula. Here are the results of this fit for two different eigenvalues which appear in the level
truncation.

λ = −0.110388, even vector Level truncation Exact value

component 0 0.158253 0.158271
component 2 −0.314559 −0.314559
component 4 0.206995 0.206947

component L+ 2 −0.583525 i −0.583576 i
component L+ 4 0.313203 i 0.313186 i
component L+ 6 −0.228656 i −0.22858 i

a1 −0.0289756
a2 0.884282
err 0.0107%

λ = −0.110388, odd vector Level truncation Exact value

component 1 0.583524 0.583575
component 3 −0.313202 −0.313185
component 5 0.228656 0.228578

component L+ 1 −0.158253 i −0.158271 i
component L+ 3 0.314561 i 0.314561 i
component L+ 5 −0.206996 i −0.206948 i

a1 −0.0289793
a2 0.884282
err 0.0107%
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λ = −0.0716535, even vector Level truncation Exact value

component 0 0.0342766 0.0342883
component 2 0.280389 0.280447
component 4 −0.260653 −0.260619

component L+ 2 −0.107005 i −0.107033 i
component L+ 4 0.201759 i 0.201769 i
component L+ 6 −0.185215 i −0.185146 i

a1 0.673384
a2 −0.100719
err 0.0102%

λ = −0.0716536, odd vector Level truncation Exact value

component 1 0.107009 0.107037
component 3 −0.20176 −0.20177
component 5 0.185216 0.185147

component L+ 1 −0.0342776 i −0.0342892 i
component L+ 3 −0.280388 i −0.280446 i
component L+ 5 0.260652 i 0.260619 i

a1 0.673384
a2 −0.100714
err 0.0102%

We see that the errors are of the order of 0.01%. This is therefore a very good test of the
validity of our formulas.

At last, let us do the same kind of test for one discrete eigenvalue in order to check (6.1). With
the same parameters as before, we have the two following discrete eigenvalues: λ1 = 0.0000900753
and λ2 = 0.366192. In the following two tables, we compare the eigenvectors related to λ2. Here,
half of the degeneracy is already broken by the B-field. Adding the perturbation will further break
the degeneracy completely, and we don’t need to use a fit.

λ = 0.366192, even vector Level truncation Exact value

component 0 0.97589 0.975946
component 2 0.0115766 0.0115736
component 4 −0.00544373 −0.00543968

component L+ 2 0.21255 i 0.212556 i
component L+ 4 −0.0404268 i −0.0404213 i
component L+ 6 0.0186439 i 0.0186363 i

err 0.0026%
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λ = 0.366192, odd vector Level truncation Exact value

component 1 0.212551 0.212556
component 3 −0.0404268 −0.0404213
component 5 0.0186439 0.0186363

component L+ 1 0.97589 i 0.975946 i
component L+ 3 0.0115766 i 0.0115737 i
component L+ 5 −0.00544373 i −0.00543973 i

err 0.0141%

Again, there is a remarkable agreement between numerical and analytical results. These calcu-
lation also show that level truncation gives very precise results for the eigenvectors; this observation
was already made in [1].

8. Conclusions and Discussions

We analytically solved the problem of finding all eigenvalues and eigenvectors of the Neumann
matrix M11 of the bosonic star-product in the matter sector including zero-modes and with a
nontrivial B-field background. In particular we see, as was already observed in [13], that turning
on a B-field does not seem to obstruct the possibility of finding exact solutions.

Starting from the spectrum of M11 with B = 0, we found that turning on the B-field has three
effects on the spectrum:

1. It shrinks the whole spectrum by ξ = 1 + (2πα′B)2.

2. It splits the discrete eigenvalue into two different ones (Zeeman effect), still in the range (0, 1
ξ
).

3. As we are considering two spatial directions, the eigenvalues in (− 1
3ξ
, 0) are now four times

degenerate. Surprisingly, when B 6= 0, the eigenvalue − 1
3ξ

is only doubly degenerate. Also

the isolated eigenvalues in the range (0, 1
ξ
) are both doubly degenerate.

In the discussion of Det we also found some discrete values inside the interval [− 1
3ξ
, 0), depending

on the parameters b and B, for which the expressions of the eigenvectors differ from those of the
continuous eigenvectors. However, it is merely an artifact of the basis in which we are expanding
our eigenvectors, and if we renormalize the expression by a proper factor it will be continuous in
the whole region [−1

3ξ
, 0)6. Furthermore, using the same trick as in [1] and [7], it is an obvious task

to calculate the spectra of M12 and M21 from the spectrum of M11 since the three of them satisfy
the same algebra relations [13].

The physical meaning of the discrete eigenvalues is still mysterious. It seems however that,
unlike the continuous ones, the discrete eigenvectors are ℓ2(N)-normalizable; this hints us that they
are particularly interesting7. It thus seems very important to try to understand the meaning of

6We thank D. Belov for discussing this issue.
7We thank W. Taylor and B. Zwiebach for a discussion about this point.
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these eigenvectors. We can actually get some clue about it by considering the large B-field limit
[11, 12]. Indeed if we write the expansion of M11 in powers of 1

B
, using (2.5) and (2.13), we find,

up to order two:

ξM11 =




1 0 0 0
0 M 0 0
0 0 1 0
0 0 0 M


+

+
1

B

i√
3π2




0 0 0 −
√

2b〈vo|
0 0 −

√
2b|vo〉 −2(|ve〉〈vo| + |vo〉〈ve|)

0
√

2b〈vo| 0 0√
2b|vo〉 2(|ve〉〈vo| + |vo〉〈ve|) 0 0




+

+
1

B2

−β
2π4




b
√

2b〈ve| 0 0√
2b|ve〉 2(|ve〉〈ve| − |vo〉〈vo|) 0 0

0 0 b
√

2b〈ve|
0 0

√
2b|ve〉 2(|ve〉〈ve| − |vo〉〈vo|)




+ O
((

1

B

)3
)
. (8.1)

If we look only to order zero, we see immediately that the spectrum of ξM11 is two copies of the
spectrum of M and another two eigenvectors with the eigenvalue one. The one with unit eigenvalue
obviously is one of our discrete eigenvalues (the other one is sent to zero as B → ∞). On the other
hand, we know from [11, 12], that in the large B-field limit, the star-algebra factorizes into a zero-
momentum star-algebra (represented here by the spectrum of M) and one non-commutative algebra
(which must therefore be related to the discrete eigenvalue) corresponding to the momentum of the
string. Putting it another way, the discrete eigenvalues should be related to the momentum of the
string. All these discussions of the limiting case give us a hint on the physical meaning of these
discrete eigenvectors we met in [7] and here.

There is another thing we can observe from equation (8.1). In the limit of large B, the mixing
of the two spatial directions happens only at the first order. In other words, comparing with the
non-commutativity from the star-product in string field theory (both the zero mode and non-zero
modes), the non-commutativity from the B-field in the spatial directions is small at large B limit.
This may be a little of surprising and deserves better understanding.

There are some immediate follow-up works, for example, to calculate the spectrum of the
Neumann matrices in the ghost sector in the light of [5]. This will clarify some subtle points,
such as the infinite coefficients mentioned therein. Another interesting direction is to discuss the
Moyal product corresponding to the case of B fields. From our eigenvectors we see a mixing of
even (odd) state in first direction with the odd (even) in the second. This pattern tells us how the
noncommutativities from the star-product and from the B-field mix up. Understanding this mix-up
will help us better comprehend the noncommutativity.
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