593 research outputs found
Time series irreversibility: a visibility graph approach
We propose a method to measure real-valued time series irreversibility which
combines two differ- ent tools: the horizontal visibility algorithm and the
Kullback-Leibler divergence. This method maps a time series to a directed
network according to a geometric criterion. The degree of irreversibility of
the series is then estimated by the Kullback-Leibler divergence (i.e. the
distinguishability) between the in and out degree distributions of the
associated graph. The method is computationally effi- cient, does not require
any ad hoc symbolization process, and naturally takes into account multiple
scales. We find that the method correctly distinguishes between reversible and
irreversible station- ary time series, including analytical and numerical
studies of its performance for: (i) reversible stochastic processes
(uncorrelated and Gaussian linearly correlated), (ii) irreversible stochastic
pro- cesses (a discrete flashing ratchet in an asymmetric potential), (iii)
reversible (conservative) and irreversible (dissipative) chaotic maps, and (iv)
dissipative chaotic maps in the presence of noise. Two alternative graph
functionals, the degree and the degree-degree distributions, can be used as the
Kullback-Leibler divergence argument. The former is simpler and more intuitive
and can be used as a benchmark, but in the case of an irreversible process with
null net current, the degree-degree distribution has to be considered to
identifiy the irreversible nature of the series.Comment: submitted for publicatio
Lyapunov exponents and transport in the Zhang model of Self-Organized Criticality
We discuss the role played by the Lyapunov exponents in the dynamics of
Zhang's model of Self-Organized Criticality. We show that a large part of the
spectrum (slowest modes) is associated with the energy transpor in the lattice.
In particular, we give bounds on the first negative Lyapunov exponent in terms
of the energy flux dissipated at the boundaries per unit of time. We then
establish an explicit formula for the transport modes that appear as diffusion
modes in a landscape where the metric is given by the density of active sites.
We use a finite size scaling ansatz for the Lyapunov spectrum and relate the
scaling exponent to the scaling of quantities like avalanche size, duration,
density of active sites, etc ...Comment: 33 pages, 6 figures, 1 table (to appear
Feigenbaum graphs: a complex network perspective of chaos
The recently formulated theory of horizontal visibility graphs transforms
time series into graphs and allows the possibility of studying dynamical
systems through the characterization of their associated networks. This method
leads to a natural graph-theoretical description of nonlinear systems with
qualities in the spirit of symbolic dynamics. We support our claim via the case
study of the period-doubling and band-splitting attractor cascades that
characterize unimodal maps. We provide a universal analytical description of
this classic scenario in terms of the horizontal visibility graphs associated
with the dynamics within the attractors, that we call Feigenbaum graphs,
independent of map nonlinearity or other particulars. We derive exact results
for their degree distribution and related quantities, recast them in the
context of the renormalization group and find that its fixed points coincide
with those of network entropy optimization. Furthermore, we show that the
network entropy mimics the Lyapunov exponent of the map independently of its
sign, hinting at a Pesin-like relation equally valid out of chaos.Comment: Published in PLoS ONE (Sep 2011
System size resonance in coupled noisy systems and in the Ising model
We consider an ensemble of coupled nonlinear noisy oscillators demonstrating
in the thermodynamic limit an Ising-type transition. In the ordered phase and
for finite ensembles stochastic flips of the mean field are observed with the
rate depending on the ensemble size. When a small periodic force acts on the
ensemble, the linear response of the system has a maximum at a certain system
size, similar to the stochastic resonance phenomenon. We demonstrate this
effect of system size resonance for different types of noisy oscillators and
for different ensembles -- lattices with nearest neighbors coupling and
globally coupled populations. The Ising model is also shown to demonstrate the
system size resonance.Comment: 4 page
Static and Dynamic Lung Volumes in Swimmers and Their Ventilatory Response to Maximal Exercise
Purpose
While the static and dynamic lung volumes of active swimmers is often greater than the predicted volume of similarly active non-swimmers, little is known if their ventilatory response to exercise is also different.
Methods
Three groups of anthropometrically matched male adults were recruited, daily active swimmers (n = 15), daily active in fields sport (Rugby and Football) (n = 15), and recreationally active (n = 15). Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and maximal voluntary ventilation (MVV) was measured before and after exercise to volitional exhaustion.
Results
Swimmers had significantly larger FVC (6.2 ± 0.6 l, 109 ± 9% pred) than the other groups (5.6 ± 0.5 l, 106 ± 13% pred, 5.5 ± 0.8, 99% pred, the sportsmen and recreational groups, respectively). FEV1 and MVV were not different. While at peak exercise, all groups reached their ventilatory reserve (around 20%), the swimmers had a greater minute ventilation rate than the recreational group (146 ± 19 vs 120 ± 87 l/min), delivering this volume by breathing deeper and slower.
Conclusions
The swimmers utilised their larger static volumes (FVC) differently during exercise by meeting their ventilation volume through long and deep breaths
Puzzle-based versus traditional lecture: comparing the effects of pedagogy on academic performance in an undergraduate human anatomy and physiology II lab
BACKGROUND: A traditional lecture-based pedagogy conveys information and content while lacking sufficient development of critical thinking skills and problem solving. A puzzle-based pedagogy creates a broader contextual framework, and fosters critical thinking as well as logical reasoning skills that can then be used to improve a student’s performance on content specific assessments. This paper describes a pedagogical comparison of traditional lecture-based teaching and puzzle-based teaching in a Human Anatomy and Physiology II Lab. METHODS: Using a single subject/cross-over design half of the students from seven sections of the course were taught using one type of pedagogy for the first half of the semester, and then taught with a different pedagogy for the second half of the semester. The other half of the students were taught the same material but with the order of the pedagogies reversed. Students’ performance on quizzes and exams specific to the course, and in-class assignments specific to this study were assessed for: learning outcomes (the ability to form the correct conclusion or recall specific information), and authentic academic performance as described by (Am J Educ 104:280–312, 1996). RESULTS: Our findings suggest a significant improvement in students’ performance on standard course specific assessments using a puzzle-based pedagogy versus a traditional lecture-based teaching style. Quiz and test scores for students improved by 2.1 and 0.4 % respectively in the puzzle-based pedagogy, versus the traditional lecture-based teaching. Additionally, the assessments of authentic academic performance may only effectively measure a broader conceptual understanding in a limited set of contexts, and not in the context of a Human Anatomy and Physiology II Lab. CONCLUSION: In conclusion, a puzzle-based pedagogy, when compared to traditional lecture-based teaching, can effectively enhance the performance of students on standard course specific assessments, even when the assessments only test a limited conceptual understanding of the material
An Integrative Approach to Understanding Counterproductive Work Behavior: The Roles of Stressors, Negative Emotions, and Moral Disengagement
Several scholars have highlighted the importance of examining moral disengagement (MD) in understanding aggression and deviant conduct across different contexts. The present study investigates the role of MD as a specific social-cognitive construct that, in the organizational context, may intervene in the process leading from stressors to counterproductive work behavior (CWB). Assuming the theoretical framework of the stressor-emotion model of CWB, we hypothesized that MD mediates, at least partially, the relation between negative emotions in reaction to perceived stressors and CWB by promoting or justifying aggressive responses to frustrating situations or events. In a sample of 1,147 Italian workers, we tested a structural equations model. The results support our hypothesis: the more workers experienced negative emotions in response to stressors, the more they morally disengaged and, in turn, enacted CW
Young Stellar Clusters Containing Massive Young Stellar Objects in the VVV Survey
This is an author-created, un-copyedited version of an article published in The Astronomical Journal. IOP Publishing is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at: at doi: https://doi.org/10.3847/0004-6256/152/3/74. © 2016. The American Astronomical Society. All rights reserved. IOPScience PublishingThe purpose of this research is to study the connection of global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object population. The analysis in based on the combination of spectroscopic parallax-based reddening and distance determinations with main sequence and pre-main sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800 Mo), the slope Gamma of the obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. On the other hand, the young stellar objects in the surrounding cluster's fields are classified by low resolution spectra, spectral energy distribution fit with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed young stellar objects (except one) are found to be massive (more than 8 Mo). Using VVV and GLIMPSE color-color cuts we have selected a large number of new young stellar object candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classification on the basis of the light curves.Peer reviewedFinal Accepted Versio
Hydrothermal pretreatment of sugarcane bagasse enhances holocellulases production by Aspergillus foetidus.
- …
