2,092 research outputs found
The effect of phosphodiesterase-5 inhibitors on cerebral blood flow in humans: A systematic review.
Agents that augment cerebral blood flow (CBF) could be potential treatments for vascular cognitive impairment. Phosphodiesterase-5 inhibitors are vasodilating drugs established in the treatment of erectile dysfunction (ED) and pulmonary hypertension. We reviewed published data on the effects of phosphodiesterase-5 inhibitors on CBF in adult humans. A systematic review according to PRISMA guidelines was performed. Embase, Medline and Cochrane Library Trials databases were searched. Sixteen studies with 353 participants in total were retrieved. Studies included healthy volunteers and patients with migraine, ED, type 2 diabetes, stroke, pulmonary hypertension, Becker muscular dystrophy and subarachnoid haemorrhage. Most studies used middle cerebral artery flow velocity to estimate CBF. Few studies employed direct measurements of tissue perfusion. Resting CBF velocity was unaffected by phosphodiesterase-5 inhibitors, but cerebrovascular regulation was improved in ED, pulmonary hypertension, diabetes, Becker's and a group of healthy volunteers. This evidence suggests that phosphodiesterase-5 inhibitors improve responsiveness of the cerebral vasculature, particularly in disease states associated with an impaired endothelial dilatory response. This supports the potential therapeutic use of phosphodiesterase-5 inhibitors in vascular cognitive impairment where CBF is reduced. Further studies with better resolution of deep CBF are warranted. The review is registered on the PROSPERO database (registration number CRD42016029668)
Frequency Dependent Rheology of Vesicular Rhyolite
Frequency dependent rheology of magmas may result from the presence of inclusions (bubbles, crystals) in the melt and/or from viscoelastic behavior of the melt itself. With the addition of deformable inclusions to a melt possessing viscoelastic properties one might expect changes in the relaxation spectrum of the shear stresses of the material (e.g., broadening of the relaxation spectrum) resulting from the viscously deformable geometry of the second phase. We have begun to investigate the effect of bubbles on the frequency dependent rheology of rhyolite melt. The present study deals with the rheology of bubble-free and vesicular rhyolite melts containing spherical voids of 10 and 30 vol %. We used a sinusoidal torsion deformation device. Vesicular rhyolite melts were generated by the melting (at 1 bar) of an Armenian obsidian (Dry Fountain, Erevan, Armenia) and Little Glass Mountain obsidian (California). The real and imaginary parts of shear viscosity and shear modulus have been determined in a frequency range of 0.005–10 Hz and temperature range of 600°–900°C. The relaxed shear viscosities of samples obtained at low frequencies and high temperatures compare well with data previously obtained by parallel plate viscometry. The relaxed shear viscosity of vesicular rhyolites decreases progressively with increasing bubble content. The relaxation spectrum for rhyolite melt without bubbles has an asymmetric form and fits an extended exponent relaxation. The presence of deformable bubbles results in an imaginary component of the shear modulus that becomes more symmetrical and extends into the low-frequency/high-temperature range. The internal friction Q −1 is unaffected in the high-frequency/low-temperature range by the presence of bubbles and depends on the bubble content in the high-temperature/low-frequency range. The present work, in combination with the previous study of Stein and Spera (1992), illustrates that magma viscosity can either increase or decrease with bubble content, depending upon the rate of style of strain during magmatic flow
Origin of non-exponential relaxation in a crystalline ionic conductor: a multi-dimensional 109Ag NMR study
The origin of the non-exponential relaxation of silver ions in the
crystalline ion conductor Ag7P3S11 is analyzed by comparing appropriate
two-time and three-time 109Ag NMR correlation functions. The non-exponentiality
is due to a rate distribution, i.e., dynamic heterogeneities, rather than to an
intrinsic non-exponentiality. Thus, the data give no evidence for the relevance
of correlated back-and-forth jumps on the timescale of the silver relaxation.Comment: 4 pages, 3 figure
Effect of Standard vs Intensive Blood Pressure Control on Cerebral Blood Flow in Small Vessel Disease The PRESERVE Randomized Clinical Trial
Importance: Blood pressure lowering is considered neuroprotective in patients with cerebral small vessel disease, however more “intensive” regimens may increase cerebral hypoperfusion. We examined the effect of intensive vs. standard blood pressure treatment on cerebral perfusion in severe small vessel disease patients.
Objective: To determine whether intensive vs. standard blood pressure lowering over 3 months causes decreased cerebral perfusion.
Design, Setting and Participants: This randomised, parallel, controlled, blinded-outcomes clinical trial took place in 2 English university medical centres. A central, online randomisation system (1:1 ratio) allocated grouping. 70 hypertensive patients with MRI confirmed symptomatic lacunar infarct and confluent white matter hyperintensities were recruited between 2012 and 2015, and randomised (36/34 in standard/intensive arms). Analysable data were available in 62 patients, 33/29 in the standard/intensive groups respectively, for intention to treat analysis. This experiment examines the 3 month follow-up period.
Intervention: Patients were randomised to “standard” (systolic=130-140mmHg) or “intensive” (systolic=<125mmHg) blood pressure targets, to be achieved through medication regimen changes.
Main Outcome and Measure: Cerebral perfusion was determined using arterial spin labelling; the primary end point was change in global perfusion between baseline and 3 months, compared between treatment groups by ANOVA. Linear regression compared change in perfusion against change in blood pressure. MR scan analysis was blinded to treatment arm.
Results: Patients were 69.3 years old (mean) and 59.7% male. Mean(SD) systolic blood pressure reduced by 8(12) and 27(17)mmHg in the standard/intensive groups, respectively (p<0.001), with achieved pressures of 141(13) and 126(10) mmHg respectively. Change in global perfusion did not differ between treatment arms: standard, mean(SD) (ml/min/100g)= -0.5(9.4); intensive, 0.7(8.6), partial ETA2= 0.004, 95% CI= -3.6–5.8, p= 0.63. No differences were observed when analysis examined grey/white matter only, or was confined to those achieving target blood pressure. The number of adverse events did not differ between treatment groups (standard/intensive mean(SD)= .21(.65)/.32(.75), p=.44).
Conclusions and Relevance: Intensive blood pressure lowering did not reduce cerebral perfusion in severe small vessel disease.This study was funded by a joint Stroke Association/British Heart Foundation program grant (TSA BHF 2010/01). The study received additional support from the Newcastle Biomedical Research Centre, which is funded by the National Institute for Health Research (NIHR). Drs O’Brien, Ford, and Markus are supported by NIHR Senior Investigator awards. Drs O’Brien and Markus are also supported by the Cambridge University Hospitals NIHR Comprehensive Biomedical Research Centre
Complex lithium ion dynamics in simulated LiPO3 glass studied by means of multi-time correlation functions
Molecular dynamics simulations are performed to study the lithium jumps in
LiPO3 glass. In particular, we calculate higher-order correlation functions
that probe the positions of single lithium ions at several times. Three-time
correlation functions show that the non-exponential relaxation of the lithium
ions results from both correlated back-and-forth jumps and the existence of
dynamical heterogeneities, i.e., the presence of a broad distribution of jump
rates. A quantitative analysis yields that the contribution of the dynamical
heterogeneities to the non-exponential depopulation of the lithium sites
increases upon cooling. Further, correlated back-and-forth jumps between
neighboring sites are observed for the fast ions of the distribution, but not
for the slow ions and, hence, the back-jump probability depends on the
dynamical state. Four-time correlation functions indicate that an exchange
between fast and slow ions takes place on the timescale of the jumps
themselves, i.e., the dynamical heterogeneities are short-lived. Hence, sites
featuring fast and slow lithium dynamics, respectively, are intimately mixed.
In addition, a backward correlation beyond the first neighbor shell for highly
mobile ions and the presence of long-range dynamical heterogeneities suggest
that fast ion migration occurs along preferential pathways in the glassy
matrix. In the melt, we find no evidence for correlated back-and-forth motions
and dynamical heterogeneities on the length scale of the next-neighbor
distance.Comment: 12 pages, 13 figure
The Economic Resource Receipt of New Mothers
U.S. federal policies do not provide a universal social safety net of economic support for women during pregnancy or the immediate postpartum period but assume that employment and/or marriage will protect families from poverty. Yet even mothers with considerable human and marital capital may experience disruptions in employment, earnings, and family socioeconomic status postbirth. We use the National Survey of Families and Households to examine the economic resources that mothers with children ages 2 and younger receive postbirth, including employment, spouses, extended family and social network support, and public assistance. Results show that many new mothers receive resources postbirth. Marriage or postbirth employment does not protect new mothers and their families from poverty, but education, race, and the receipt of economic supports from social networks do
Telescoped approach to aryl hydroxymethylation in the synthesis of a key pharmaceutical intermediate
An efficient synthetic approach leading to introduction of the hydroxymethyl group to an aryl moiety via combination of the Bouveault formylation and hydride reduction has been optimized using a rational, mechanistic-based approach. This approach enabled telescoping of the two steps into a single efficient process, readily amenable to scaleup
Strongly correlating liquids and their isomorphs
This paper summarizes the properties of strongly correlating liquids, i.e.,
liquids with strong correlations between virial and potential energy
equilibrium fluctuations at constant volume. We proceed to focus on the
experimental predictions for strongly correlating glass-forming liquids. These
predictions include i) density scaling, ii) isochronal superposition, iii) that
there is a single function from which all frequency-dependent viscoelastic
response functions may be calculated, iv) that strongly correlating liquids are
approximately single-parameter liquids with close to unity Prigogine-Defay
ratio, and v) that the fictive temperature initially decreases for an isobaric
temperature up jump. The "isomorph filter", which allows one to test for
universality of theories for the non-Arrhenius temperature dependence of the
relaxation time, is also briefly discussed
Feasibility of single-order parameter description of equilibrium viscous liquid dynamics
Molecular dynamics results for the dynamic Prigogine-Defay ratio are
presented for two glass-forming liquids, thus evaluating the experimentally
relevant quantity for testing whether metastable-equilibrium liquid dynamics to
a good approximation are described by a single parameter. For the Kob-Andersen
binary Lennard-Jones mixture as well as for an asymmetric dumbbell model liquid
a single-parameter description works quite well. This is confirmed by
time-domain results where it is found that energy and pressure fluctuations are
strongly correlated on the alpha-time scale in the NVT ensemble; in the NpT
ensemble energy and volume fluctuations similarly correlate strongly.Comment: Phys. Rev. E, in pres
- …
