3,922 research outputs found
Detection of the magneto-structural phase coexistence in MnAs epilayers at a very early stage
We report on the appearance of magnetic stripes in MnAs/GaAs(100) epilayers
at temperatures well below the ferromagnetic transition of the system. The
study has been performed by ferromagnetic resonance experiments (FMR) on MnAs
epilayers grown on (100) and (111) GaAs substrates. The FMR spectra of the
MnAs/GaAs(100) samples at 180 K reveal the appearance of zones of different
magnetic behavior with respect to the low-temperature homogeneous ferromagnetic
phase. The angular and the temperature dependence of the spectra serve us to
detect the inter-growth of the non-magnetic phase into the ferromagnetic phase
at a very early stage of the process. The experimental data show that the new
phase nucleates in a self-arranged array of stripes in MnAs/GaAs(100) thin
films while it grows randomly in the same films grown on GaAs(111).Comment: 8 pages, 5 figure
Magnetization reversal and anomalous coercive field temperature dependence in MnAs epilayers grown on GaAs(100) and GaAs(111)B
The magnetic properties of MnAs epilayers have been investigated for two
different substrate orientations: GaAs(100) and GaAs(111). We have analyzed the
magnetization reversal under magnetic field at low temperatures, determining
the anisotropy of the films. The results, based on the shape of the
magnetization loops, suggest a domain movement mechanism for both types of
samples. The temperature dependence of the coercivity of the films has been
also examined, displaying a generic anomalous reentrant behavior at T200 K.
This feature is independent of the substrate orientation and films thickness
and may be associated to the appearance of new pinning centers due to the
nucleation of the -phase at high temperatures.Comment: 9 pages, 7 figure
Photon Self-Induced Spin to Orbital Conversion in TGG crystal at high laser power
In this paper, we present experimental evidence of a newly discovered
third-order nonlinear optical process Self-Induced Spin-to-Orbital Conversion
(SISTOC) of the photon angular momentum. This effect is the physical mechanism
at the origin of the depolarization of very intense laser beams propagating in
isotropic materials. The SISTOC process, like self-focusing, is triggered by
laser heating leading to a radial temperature gradient in the medium. In this
work we tested the occurrence of SISTOC in a terbium gallium garnet (TGG) rod
for an impinging laser power of about 100~W. To study the SISTOC process we
used different techniques: polarization analysis, interferometry and tomography
of the photon orbital angular momentum. Our results confirm, in particular,
that the apparent depolarization of the beam is due to the occurrence of
maximal entanglement between the spin and orbital angular momentum of the
photons undergoing the SISTOC process. This explanation of the true nature of
the depolarization mechanism could be of some help in finding novel methods to
reduce or to compensate for this usually unwanted depolarization effect in all
cases where very high laser power and good beam quality are required.Comment: 6 pages, 10 figures, submitte
Thermodynamic conditions during growth determine the magnetic anisotropy in epitaxial thin-films of LaSrMnO
The suitability of a particular material for use in magnetic devices is
determined by the process of magnetization reversal/relaxation, which in turn
depends on the magnetic anisotropy. Therefore, designing new ways to control
magnetic anisotropy in technologically important materials is highly desirable.
Here we show that magnetic anisotropy of epitaxial thin-films of half-metallic
ferromagnet LaSrMnO (LSMO) is determined by the proximity
to thermodynamic equilibrium conditions during growth. We performed a series of
X-ray diffraction and ferromagnetic resonance (FMR) experiments in two
different sets of samples: the first corresponds to LSMO thin-films deposited
under tensile strain on (001) SrTiO by Pulsed Laser Deposition (PLD; far
from thermodynamic equilibrium); the second were deposited by a slow Chemical
Solution Deposition (CSD) method, under quasi-equilibrium conditions. Thin
films prepared by PLD show a in-plane cubic anisotropy with an overimposed
uniaxial term. A large anisotropy constant perpendicular to the film plane was
also observed in these films. However, the uniaxial anisotropy is completely
suppressed in the CSD films. The out of plane anisotropy is also reduced,
resulting in a much stronger in plane cubic anisotropy in the chemically
synthesized films. This change is due to a different rotation pattern of
MnO octahedra to accomodate epitaxial strain, which depends not only on
the amount of tensile stress imposed by the STO substrate, but also on the
growth conditions. Our results demonstrate that the nature and magnitude of the
magnetic anisotropy in LSMO can be tuned by the thermodynamic parameters during
thin-film deposition.Comment: 6 pages, 8 Figure
Magnetic helicity and cosmological magnetic field
The magnetic helicity has paramount significance in nonlinear saturation of
galactic dynamo. We argue that the magnetic helicity conservation is violated
at the lepton stage in the evolution of early Universe. As a result, a
cosmological magnetic field which can be a seed for the galactic dynamo obtains
from the beginning a substantial magnetic helicity which has to be taken into
account in the magnetic helicity balance at the later stage of galactic dynamo.Comment: 11 pages, no figures; v3: new references and new paragraphs added,
discussion extended, some mistypings correcte
Magnetic field dependence of antiferromagnetic resonance in NiO
We report on measurements of magnetic field and temperature dependence of antiferromagnetic resonances in the prototypical antiferromagnet NiO. The frequencies of the magnetic resonances in the vicinity of 1 THz have been determined in the time-domain via time-resolved Faraday measurements after selective excitation by narrow-band superradiant terahertz (THz) pulses at temperatures down to 3 K and in magnetic fields up to 10 T. The measurements reveal two antiferromagnetic resonance modes, which can be distinguished by their characteristic magnetic field dependencies. The nature of the two modes is discussed by comparison to an eight-sublattice antiferromagnetic model, which includes superexchange between the next-nearest-neighbor Ni spins, magnetic dipolar interactions, cubic magneto-crystalline anisotropy, and Zeeman interaction with the external magnetic field. Our study indicates that a two-sublattice model is insufficient for the description of spin dynamics in NiO, while the magnetic-dipolar interactions and magneto-crystalline anisotropy play important roles
Response of microchannel plates to single particles and to electromagnetic showers
We report on the response of microchannel plates (MCPs) to single
relativistic particles and to electromagnetic showers. Particle detection by
means of secondary emission of electrons at the MCP surface has long been
proposed and is used extensively in ion time-of-flight mass spectrometers. What
has not been investigated in depth is their use to detect the ionizing
component of showers. The time resolution of MCPs exceeds anything that has
been previously used in calorimeters and, if exploited effectively, could aid
in the event reconstruction at high luminosity colliders. Several prototypes of
photodetectors with the amplification stage based on MCPs were exposed to
cosmic rays and to 491 MeV electrons at the INFN-LNF Beam-Test Facility. The
time resolution and the efficiency of the MCPs are measured as a function of
the particle multiplicity, and the results used to model the response to
high-energy showers.Comment: Paper submitted to NIM
Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients The ROADMAP Study 2-Year Results
OBJECTIVES The authors sought to provide the pre-specified primary endpoint of the ROADMAP (Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients) trial at 2 years. BACKGROUND The ROADMAP trial was a prospective nonrandomized observational study of 200 patients (97 with a left ventricular assist device [LVAD], 103 on optimal medical management [OMM]) that showed that survival with improved functional status at 1 year was better with LVADs compared with OMM in a patient population of ambulatory New York Heart Association functional class IIIb/IV patients. METHODS The primary composite endpoint was survival on original therapy with improvement in 6-min walk distance \u3e= 75 m. RESULTS Patients receiving LVAD versus OMM had lower baseline health-related quality of life, reduced Seattle Heart Failure Model 1-year survival (78% vs. 84%; p = 0.012), and were predominantly INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support) profile 4 (65% vs. 34%; p \u3c 0.001) versus profiles 5 to 7. More LVAD patients met the primary endpoint at 2 years: 30% LVAD versus 12% OMM (odds ratio: 3.2 [95% confidence interval: 1.3 to 7.7]; p = 0.012). Survival as treated on original therapy at 2 years was greater for LVAD versus OMM (70 +/- 5% vs. 41 +/- 5%; p \u3c 0.001), but there was no difference in intent-to-treat survival (70 +/- 5% vs. 63 +/- 5%; p = 0.307). In the OMM arm, 23 of 103 (22%) received delayed LVADs (18 within 12 months; 5 from 12 to 24 months). LVAD adverse events declined after year 1 for bleeding (primarily gastrointestinal) and arrhythmias. CONCLUSIONS Survival on original therapy with improvement in 6-min walk distance was superior with LVAD compared with OMM at 2 years. Reduction in key adverse events beyond 1 year was observed in the LVAD group. The ROADMAP trial provides risk-benefit information to guide patient- and physician-shared decision making for elective LVAD therapy as a treatment for heart failure. (Risk Assessment and Comparative Effectiveness of Left Ventricular Assist Device and Medical Management in Ambulatory Heart Failure Patients [ROADMAP]; NCT01452802
And in the Darkness Bind Them: Equatorial Rings, B[e] Supergiants, and the Waists of Bipolar Nebulae
We report the discovery of two new circumstellar ring nebulae in the western
Carina Nebula. The brighter object, SBW1, resembles a lidless staring eye and
encircles a B1.5 Iab supergiant. Its size is identical to the inner ring around
SN1987A, but SBW1's low N abundance indicates that the star didn't pass through
a RSG phase. The fainter object, SBW2, is a more distorted ring, is N-rich, and
has a central star that seems to be invisible. We discuss these two new nebulae
in context with rings around SN1987A, Sher25, HD168625, RY Scuti, WeBo1, SuWt2,
and others. The ring bearers fall into two groups: Five rings surround hot
supergiants, and all except for the one known binary are carbon copies of the
ring around SN1987A. We propose a link between these rings and B[e]
supergiants, where the rings derive from the same material in an earlier B[e]
phase. The remaining four rings surround evolved intermediate-mass stars; all
members of this ring fellowship are close binaries, hinting that binary
interactions govern the forging of such rings. We estimate that there may be
several thousand more dark rings in the Galaxy, but we are scarcely aware of
their existence due to selection effects. The lower-mass objects might be the
equatorial density enhancements often invoked to bind the waists of bipolar
PNe.Comment: AJ accepted, 27 page
- …
