1,646 research outputs found

    XPS Study of Superconducting LiTi2O4 and LiTi2-xCuxO4 Sol-Gel Derived Powders and Thin Films

    Get PDF
    In this work X-ray photoelectron studies of lithium titanate and copper doped lithium titanate are presented. Both, powder and thin lms samples were prepared by sol gel method. After preparation, the samples were heated in argon atmosphere at various temperatures in a range from 500 ◦C to 600 ◦C for 20 h. The crystalline structure of the samples was investigated by X-ray di raction, while the oxidation states of the elements were examined by X-ray photoelectron spectroscopy method. X-ray di raction measurements con rmed spinel phase of all manufactured samples. However it is well known that electrical and superconducting properties of lithium titanate are strongly correlated not only with structure, but also with oxidation state of Ti ions. X-ray photoelectron spectroscopy investigations revealed mixture of Ti3+ and Ti4+ ions, although the Ti3+/Ti4+ ratio is much smaller than 1 2 needed for superconductivity. In this work dependence between calcination temperature as well as amount of Cu dopant and Ti3+/Ti4+ proportion are reported

    Superconducting properties of VN-SiO 2 sol-gel derived thin films

    Get PDF
    In this work studies of structure and superconducting properties of VN SiO2 lms are reported. The lms were obtained through thermal nitridation (ammonolysis) of sol gel derived V2O3 SiO2 coatings (in a proper V2O3/SiO2 ratio) at 1200 ◦ C. This process leads to the formation of disordered structure with VN metallic grains dispersed in the insulating SiO2 matrix. The structural transformations occurring in the lms as a result of ammonolysis were studied using X-ray photoelectron spectroscopy (XPS). The critical superconducting parameters are obtained. The magnetoresistance at high magnetic elds has been investigated

    MnAs dots grown on GaN(0001)-(1x1) surface

    Full text link
    MnAs has been grown by means of MBE on the GaN(0001)-(1x1) surface. Two options of initiating the crystal growth were applied: (a) a regular MBE procedure (manganese and arsenic were delivered simultaneously) and (b) subsequent deposition of manganese and arsenic layers. It was shown that spontaneous formation of MnAs dots with the surface density of 11011\cdot 10^{11} cm2^{-2} and 2.510112.5\cdot 10^{11} cm2^{-2}, respectively (as observed by AFM), occurred for the layer thickness higher than 5 ML. Electronic structure of the MnAs/GaN systems was studied by resonant photoemission spectroscopy. That led to determination of the Mn 3d - related contribution to the total density of states (DOS) distribution of MnAs. It has been proven that the electronic structures of the MnAs dots grown by the two procedures differ markedly. One corresponds to metallic, ferromagnetic NiAs-type MnAs, the other is similar to that reported for half-metallic zinc-blende MnAs. Both system behave superparamagnetically (as revealed by magnetization measurements), but with both the blocking temperatures and the intra-dot Curie temperatures substantially different. The intra-dot Curie temperature is about 260 K for the former system while markedly higher than room temperature for the latter one. Relations between growth process, electronic structure and other properties of the studied systems are discussed. Possible mechanisms of half-metallic MnAs formation on GaN are considered.Comment: 20+ pages, 8 figure

    Ferromagnetic GaMnAs/GaAs superlattices - MBE growth and magnetic properties

    Full text link
    We have studied the magnetic properties of (GaMnAs)m/(GaAs)n superlattices with magnetic GaMnAs layers of thickness between 8 and 16 molecular layers (ML) (23-45 \AA), and with nonmagnetic GaAs spacers from 4 ML to 10 ML (11-28 \AA). While previous reports state that GaMnAs layers thinner than 50 \AA are paramagnetic in the whole Mn composition range achievable using MBE growth (up to 8% Mn), we have found that short period superlattices exhibit a paramagnetic-to-ferromagnetic phase transition with a transition temperature which depends on both the thickness of the magnetic GaMnAs layer and the nonmagnetic GaAs spacer. The neutron scattering experiments have shown that the magnetic layers in superlattices are ferromagnetically coupled for both thin (below 50 \AA) and thick (above 50 \AA) GaMnAs layers.Comment: Proceedings of 4th International Workshop on Molecular Beam Epitaxy and Vapour Phase Epitaxy Growth Physics and Technology, September 23 - 28 (2001), Warszawa, Poland, to appear in Thin Solid Films. 24 pages, 8 figure

    What Developers Want and Need from Program Analysis: An Empirical Study

    Get PDF
    Program Analysis has been a rich and fruitful field of research for many decades, and countless high quality program analysis tools have been produced by academia. Though there are some well-known examples of tools that have found their way into routine use by practitioners, a common challenge faced by researchers is knowing how to achieve broad and lasting adoption of their tools. In an effort to understand what makes a program analyzer most attractive to developers, we mounted a multi-method investigation at Microsoft. Through interviews and surveys of developers as well as analysis of defect data, we provide insight and answers to four high level research questions that can help researchers design program analyzers meeting the needs of software developers. First, we explore what barriers hinder the adoption of program analyzers, like poorly expressed warning messages. Second, we shed light on what functionality developers want from analyzers, including the types of code issues that developers care about. Next, we answer what non-functional characteristics an analyzer should have to be widely used, how the analyzer should fit into the development process, and how its results should be reported. Finally, we investigate defects in one of Microsoft's flagship software services, to understand what types of code issues are most important to minimize, potentially through program analysis

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    Prospects of high temperature ferromagnetism in (Ga,Mn)As semiconductors

    Get PDF
    We report on a comprehensive combined experimental and theoretical study of Curie temperature trends in (Ga,Mn)As ferromagnetic semiconductors. Broad agreement between theoretical expectations and measured data allows us to conclude that T_c in high-quality metallic samples increases linearly with the number of uncompensated local moments on Mn_Ga acceptors, with no sign of saturation. Room temperature ferromagnetism is expected for a 10% concentration of these local moments. Our magnetotransport and magnetization data are consistnent with the picture in which Mn impurities incorporated during growth at interstitial Mn_I positions act as double-donors and compensate neighboring Mn_Ga local moments because of strong near-neighbor Mn_Ga-Mn_I antiferromagnetic coupling. These defects can be efficiently removed by post-growth annealing. Our analysis suggests that there is no fundamental obstacle to substitutional Mn_Ga doping in high-quality materials beyond our current maximum level of 6.2%, although this achievement will require further advances in growth condition control. Modest charge compensation does not limit the maximum Curie temperature possible in ferromagnetic semiconductors based on (Ga,Mn)As.Comment: 13 pages, 12 figures, submitted to Phys. Rev.

    Dependence of Curie Temperature on the Thickness of Epitaxial (Ga,Mn)As Film

    Full text link
    We present the magnetotransport properties of very thin (5 to 15 nm) single (Ga,Mn)As layers grown by low temperature molecular beam epitaxy. A lower (Ga,Mn)As thickness limit of 5 nm for the ferromagnetic phase and the dependence of the Curie temperature on (Ga,Mn)As thickness are determined from electrical transport measurements. The Curie temperature is determined to be 97 K for the thinnest ferromagnetic sample and is found to decrease for increasing layer thickness. A carrier density of ~7.1×1020\times10^{20} cm3^{-3} for the 5 nm thick (Ga,Mn)As layer is determined from Hall measurements. Differences between magnetotransport properties of thick and thin (Ga,Mn)As layers are observed and discussed.Comment: 6 pages, 4 figure
    corecore