346 research outputs found

    Advanced Photonics Congress

    Get PDF
    Abstract: We investigated the passivation of III-V semiconductor nanostructures using wet-chemical ammonium sulfide treatment and SiO x encapsulation. We achieved an ultra-low surface recombination velocity value of ~530 cm/s enabling the future development of high-performance room-temperature nanolasers

    Triangulation of gravitational wave sources with a network of detectors

    Get PDF
    There is significant benefit to be gained by pursuing multi-messenger astronomy with gravitational wave and electromagnetic observations. In order to undertake electromagnetic follow-ups of gravitational wave signals, it will be necessary to accurately localize them in the sky. Since gravitational wave detectors are not inherently pointing instruments, localization will occur primarily through triangulation with a network of detectors. We investigate the expected timing accuracy for observed signals and the consequences for localization. In addition, we discuss the effect of systematic uncertainties in the waveform and calibration of the instruments on the localization of sources. We provide illustrative results of timing and localization accuracy as well as systematic effects for coalescing binary waveforms.Comment: 20 pages, 5 figure

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Calibration and sensitivity of the Virgo detector during its second science run

    Full text link
    The Virgo detector is a kilometer-length interferometer for gravitational wave detection located near Pisa (Italy). During its second science run (VSR2) in 2009, six months of data were accumulated with a sensitivity close to its design. In this paper, the methods used to determine the parameters for sensitivity estimation and gravitational wave reconstruction are described. The main quantities to be calibrated are the frequency response of the mirror actuation and the sensing of the output power. Focus is also put on their absolute timing. The monitoring of the calibration data as well as the parameter estimation with independent techniques are discussed to provide an estimation of the calibration uncertainties. Finally, the estimation of the Virgo sensitivity in the frequency-domain is described and typical sensitivities measured during VSR2 are shown.Comment: 30 pages, 23 figures, 1 table. Published in Classical and Quantum Gravity (CQG), Corrigendum include

    Virgo calibration and reconstruction of the gravitational wave strain during VSR1

    Get PDF
    Virgo is a kilometer-length interferometer for gravitational waves detection located near Pisa. Its first science run, VSR1, occured from May to October 2007. The aims of the calibration are to measure the detector sensitivity and to reconstruct the time series of the gravitational wave strain h(t). The absolute length calibration is based on an original non-linear reconstruction of the differential arm length variations in free swinging Michelson configurations. It uses the laser wavelength as length standard. This method is used to calibrate the frequency dependent response of the Virgo mirror actuators and derive the detector in-loop response and sensitivity within ~5%. The principle of the strain reconstruction is highlighted and the h(t) systematic errors are estimated. A photon calibrator is used to check the sign of h(t). The reconstructed h(t) during VSR1 is valid from 10 Hz up to 10 kHz with systematic errors estimated to 6% in amplitude. The phase error is estimated to be 70 mrad below 1.9 kHz and 6 micro-seconds above.Comment: 8 pages, 8 figures, proceedings of Amaldi 8 conference, to be published in Journal of Physics Conference Series (JPCS). Second release: correct typo

    The variable finesse locking technique

    Get PDF
    Virgo is a power recycled Michelson interferometer, with 3 km long Fabry-Perot cavities in the arms. The locking of the interferometer has been obtained with an original lock acquisition technique. The main idea is to lock the instrument away from its working point. Lock is obtained by misaligning the power recycling mirror and detuning the Michelson from the dark fringe. In this way, a good fraction of light escapes through the antisymmetric port and the power build-up inside the recycling cavity is extremely low. The benefit is that all the degrees of freedom are controlled when they are almost decoupled, and the linewidth of the recycling cavity is large. The interferometer is then adiabatically brought on to the dark fringe. This technique is referred to as variable finesse, since the recycling cavity is considered as a variable finesse Fabry-Perot. This technique has been widely tested and allows us to reach the dark fringe in few minutes, in an essentially deterministic way

    Scientific Potential of Einstein Telescope

    Full text link
    Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.Comment: Conforms to conference proceedings, several author names correcte

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target
    • …
    corecore