948 research outputs found
Emulsion formation and stabilization by biomolecules: the leading role of cellulose
Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries. In most cases, the modified celluloses are used as rheology modifiers (thickeners) or as emulsifying agents. In the last decade, the structural features of cellulose have been revisited, with particular focus on its structural anisotropy (amphiphilicity) and the molecular interactions leading to its resistance to dissolution. The amphiphilic behavior of native cellulose is evidenced by its capacity to adsorb at the interface between oil and aqueous solvent solutions, thus being capable of stabilizing emulsions. In this overview, the fundamentals of emulsion formation and stabilization by biomolecules are briefly revisited before different aspects around the emerging role of cellulose as emulsion stabilizer are addressed in detail. Particular focus is given to systems stabilized by native cellulose, either molecularly-dissolved or not (Pickering-like effect).Financially support by the Portuguese Foundation for Science and Technology, FCT, via the projects PTDC/AGR-TEC/4814/2014, PTDC/ASP-SIL/30619/2017 and researcher grant IF/01005/2014. RISE Research Institutes of Sweden AB and PERFORM, a competence platform in Formulation Science at RISE, are acknowledged for additional financing. This research has been supported by
Treesearch.se.info:eu-repo/semantics/publishedVersio
Associating polymer-surfactant systems
Some recent illustrations of the phase behavior of polymer-amphiphile systems in solution are presented. Surfactant-polymer association is demonstrated for various amphiphilic synthetic and biological polymers both on a macroscopic and on a single molecular level
Probing cellulose amphiphilicity
Cellulose dissolution and regeneration is an increasingly active research field due to the direct relevance for numerous production processes and applications. The problem is not trivial since cellulose solvents are of remarkably different nature and thus the understanding of the subtle balance between the different interactions involved becomes difficult but crucial. There is a current discussion in literature on the balance between hydrogen bonding and hydrophobic interactions in controlling the solution behavior of cellulose. This treatise attempts to review recent work highlighting the marked amphiphilic characteristics of cellulose and role of hydrophobic interactions in dissolution and regeneration. Additionally, a few examples of our own research are discussed focusing on the role of different additives in cellulose solubility. The data does support the amphiphilic behavior of cellulose, which clearly should not be neglected when developing new solvents and strategies for cellulose dissolution and regeneration
Electron Radiated Power in Cyclotron Radiation Emission Spectroscopy Experiments
The recently developed technique of Cyclotron Radiation Emission Spectroscopy
(CRES) uses frequency information from the cyclotron motion of an electron in a
magnetic bottle to infer its kinetic energy. Here we derive the expected radio
frequency signal from an electron in a waveguide CRES apparatus from first
principles. We demonstrate that the frequency-domain signal is rich in
information about the electron's kinematic parameters, and extract a set of
measurables that in a suitably designed system are sufficient for disentangling
the electron's kinetic energy from the rest of its kinematic features. This
lays the groundwork for high-resolution energy measurements in future CRES
experiments, such as the Project 8 neutrino mass measurement.Comment: 15 pages, 10 figure
Finite and infinite-dimensional symmetries of pure N=2 supergravity in D=4
We study the symmetries of pure N=2 supergravity in D=4. As is known, this
theory reduced on one Killing vector is characterised by a non-linearly
realised symmetry SU(2,1) which is a non-split real form of SL(3,C). We
consider the BPS brane solutions of the theory preserving half of the
supersymmetry and the action of SU(2,1) on them. Furthermore we provide
evidence that the theory exhibits an underlying algebraic structure described
by the Lorentzian Kac-Moody group SU(2,1)^{+++}. This evidence arises both from
the correspondence between the bosonic space-time fields of N=2 supergravity in
D=4 and a one-parameter sigma-model based on the hyperbolic group SU(2,1)^{++},
as well as from the fact that the structure of BPS brane solutions is neatly
encoded in SU(2,1)^{+++}. As a nice by-product of our analysis, we obtain a
regular embedding of the Kac-Moody algebra su(2,1)^{+++} in e_{11} based on
brane physics.Comment: 70 pages, final version published in JHE
Fourier Transform NMR Self-diffusion Studies Of A Nonaqueous Microemulsion System
Self-diffusion coefficients of the components of the microemulsion system glycerol/hexanol/sodium dodecyl sulfate (SDS) were determined in the presence and absence of an oil, p-xylene, and the results were compared with those from corresponding aqueous systems (i.e., glycerol replaced by water). In the aqueous system, the water in the hexanol rich isotropic liquid showed a diffusion coefficient less than 10% of that of free water, while that of hexanol was roughly 80% of that of free hexanol; such restricted motion of the water is consistent with the presence of water as discrete droplets. Partial substitution of p-xylene for hexanol did not affect the diffusion coefficient of water appreciably. In the nonaqueous three-component system, the diffusion coefficients of glycerol, SDS, and hexanol all decreased in concert as the glycerol content increased, e.g., that of hexanol goes from 1.75 x 10-10 m2 s-1 to 2.7 x 10-11 m2 s-1 as the glycerol content ranges from 10 to 80%. The diffusion coefficient of glycerol was always greater than that of neat glycerol by a factor of 5 to 45. As the diffusion coefficients of all components were within a factor of 2, the idea of segregating one or more components into disconnected domains is not supported. There is no support for glycerol droplets but these microemulsions appear to be structureless. © 1987
A collaborative platform for management of chronic diseases via guideline-driven individualized care plans
Older age is associated with an increased accumulation of multiple chronic conditions. The clinical management of patients suffering from multiple chronic conditions is very complex, disconnected and time-consuming with the traditional care settings. Integrated care is a means to address the growing demand for improved patient experience and health outcomes of multimorbid and long-term care patients. Care planning is a prevalent approach of integrated care, where the aim is to deliver more personalized and targeted care creating shared care plans by clearly articulating the role of each provider and patient in the care process. In this paper, we present a method and corresponding implementation of a semi-automatic care plan management tool, integrated with clinical decision support services which can seamlessly access and assess the electronic health records (EHRs) of the patient in comparison with evidence based clinical guidelines to suggest personalized recommendations for goals and interventions to be added to the individualized care plans. We also report the results of usability studies carried out in four pilot sites by patients and clinicians
Characteristic Evolution and Matching
I review the development of numerical evolution codes for general relativity
based upon the characteristic initial value problem. Progress in characteristic
evolution is traced from the early stage of 1D feasibility studies to 2D
axisymmetric codes that accurately simulate the oscillations and gravitational
collapse of relativistic stars and to current 3D codes that provide pieces of a
binary black hole spacetime. Cauchy codes have now been successful at
simulating all aspects of the binary black hole problem inside an artificially
constructed outer boundary. A prime application of characteristic evolution is
to extend such simulations to null infinity where the waveform from the binary
inspiral and merger can be unambiguously computed. This has now been
accomplished by Cauchy-characteristic extraction, where data for the
characteristic evolution is supplied by Cauchy data on an extraction worldtube
inside the artificial outer boundary. The ultimate application of
characteristic evolution is to eliminate the role of this outer boundary by
constructing a global solution via Cauchy-characteristic matching. Progress in
this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note:
updated version of arXiv:gr-qc/050809
Thermodynamic study of interactions between ZnO and ZnO binding peptides using isothermal titration calorimetry
Whilst material specific peptide binding sequences have been identified using a combination of combinato-rial methods and computational modelling tools, a deep molecular level understanding of the fundamental principles through which these interactions occur and in some instances modify the morphology of inorganic materials is far from being fully realized. Understanding the thermodynamic changes that occur during peptide-inorganic interactions and correlating these to structural modifications of the inorganic materials could be the key to achieving and mastering con-trol over material formation processes. This study is a detailed investigation applying isothermal titration calorimetry (ITC) to directly probe thermodynamic changes that occur during interaction of ZnO binding peptides (ZnO-BPs) and ZnO. The ZnO-BPs used are reported sequences G-12 (GLHVMHKVAPPR), GT-16 (GLHVMHKVAPPR-GGGC) and alanine mutants of G-12 (G-12A6, G-12A11 and G-12A12) whose interaction with ZnO during solution synthesis studies have been extensively investigated. The interactions of the ZnO-BPs with ZnO yielded biphasic isotherms comprising both an endo-thermic and an exothermic event. Qualitative differences were observed in the isothermal profiles of the different pep-tides and ZnO particles studied. Measured ΔG values were between -6 and -8.5 kcal/mol and high adsorption affinity val-ues indicated the occurrence of favourable ZnO-BP-ZnO interactions. ITC has great potential in its use to understand peptide-inorganic interactions and with continued development, the knowledge gained may be instrumental for simplifi-cation of selection processes of organic molecules for the advancement of material synthesis and design
The effect of polymers on the phase behavior of balanced microemulsions: diblock-copolymer and comb-polymers
- …
