675 research outputs found

    Efficient design and evaluation of countermeasures against fault attacks using formal verification

    Get PDF
    This paper presents a formal verification framework and tool that evaluates the robustness of software countermeasures against fault-injection attacks. By modeling reference assembly code and its protected variant as automata, the framework can generate a set of equations for an SMT solver, the solutions of which represent possible attack paths. Using the tool we developed, we evaluated the robustness of state-of-the-art countermeasures against fault injection attacks. Based on insights gathered from this evaluation, we analyze any remaining weaknesses and propose applications of these countermeasures that are more robust

    Effects of aging and coronary artery disease on sympathetic neural recruitment strategies during end-inspiratory and end-expiratory apnea

    Get PDF
    In response to acute physiological stress, the sympathetic nervous system modifies neural outflow through increased firing frequency of lower-threshold axons, recruitment of latent subpopulations of higher-threshold axons, and/or acute modifications of synaptic delays. Aging and coronary artery disease (CAD) often modify efferent muscle sympathetic nerve activity (MSNA). Therefore, we investigated whether CAD (n = 14; 61 ± 10 yr) and/or healthy aging without CAD (OH; n = 14; 59 ± 9 yr) modified these recruitment strategies that normally are observed in young healthy (YH; n = 14; 25 ± 3 yr) individuals. MSNA (microneurography) was measured at baseline and during maximal voluntary end-inspiratory (EI) and end-expiratory (EE) apneas. Action potential (AP) patterns were studied using a novel AP analysis technique. AP frequency increased in all groups during both EI- and EE-apnea (all P \u3c 0.05). The mean AP content per integrated burst increased during EI- and EE-apnea in YH (EI: Δ6 ± 4 APs/burst; EE: Δ10 ± 6 APs/burst; both P \u3c 0.01) and OH (EI: Δ3 ± 3 APs/burst; EE: Δ4 ± 5 APs/burst; both P \u3c 0.01), but not in CAD (EI: Δ1 ± 3 APs/burst; EE: Δ2 ± 3 APs/burst; both P = NS). When APs were binned into clusters according to peak-to-peak amplitude, total clusters increased during EI- and EE-apnea in YH (EI: Δ5 ± 2; EE: Δ6 ± 4; both P \u3c 0.01), during EI-apnea only in OH (EI: Δ1 ± 2; P \u3c 0.01; EE: Δ1 ± 2; P = NS), and neither apnea in CAD (EI: Δ -2 ± 2; EE: Δ -1 ± 2; both P = NS). In all groups, the AP cluster size-latency profile was shifted downwards for every corresponding cluster during EI- and EE-apnea (all P \u3c 0.01). As such, inherent dysregulation exists within the central features of apnea-related sympathetic outflow in aging and CAD

    Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis

    Get PDF
    The fluorescent compound Hoechst 33342 is a substrate for many multidrug resistance (MDR) transporters and is widely used to characterize their transport activity. We have constructed mutants of the adenosine triphosphate (ATP) binding cassette (ABC)-type MDR transporter LmrA of Lactococcus lactis that are defective in ATP hydrolysis. These mutants and wild-type LmrA exhibited an atypical behavior in the Hoechst 33342 transport assay. In membrane vesicles, Hoechst 33342 transport was shown to be independent of the ATPase activity of LmrA, and it was not inhibited by orthovanadate but sensitive to uncouplers that collapse the proton gradient and to N,N'-dicyclohexylcarbodiimide, an inhibitor of the F0F1-ATPase. In contrast, transport of Hoechst 33342 by the homologous, heterodimeric MDR transporter LmrCD showed a normal ATP dependence and was insensitive to uncouplers of the proton gradient. With intact cells, expression of LmrA resulted in an increased rate of Hoechst 33342 influx while LmrCD caused a decrease in the rate of Hoechst 33342 influx. Cellular toxicity assays using a triple knockout strain, i.e., L. lactis ΔlmrA ΔlmrCD, demonstrate that expression of LmrCD protects cells against the growth inhibitory effects of Hoechst 33342, while in the presence of LmrA, cells are more susceptible to Hoechst 33342. Our data demonstrate that the LmrA-mediated Hoechst 33342 transport in membrane vesicles is influenced by the transmembrane pH gradient due to a pH-dependent partitioning of Hoechst 33342 into the membrane.

    Effects of 6 Months of Exercise-Based Cardiac Rehabilitation on Autonomic Function and Neuro-Cardiovascular Stress Reactivity in Coronary Artery Disease Patients

    Get PDF
    Background Autonomic dysregulation represents a hallmark of coronary artery disease (CAD). Therefore, we investigated the effects of exercise-based cardiac rehabilitation (CR) on autonomic function and neuro-cardiovascular stress reactivity in CAD patients. Methods and Results Twenty-two CAD patients (4 women; 62±8 years) were studied before and following 6 months of aerobic- and resistance-training-based CR. Twenty-two similarly aged, healthy individuals (CTRL; 7 women; 62±11 years) served as controls. We measured blood pressure, muscle sympathetic nerve activity, heart rate, heart rate variability (linear and nonlinear), and cardiovagal (sequence method) and sympathetic (linear relationship between burst incidence and diastolic blood pressure) baroreflex sensitivity during supine rest. Furthermore, neuro-cardiovascular reactivity during short-duration static handgrip (20s) at 40% maximal effort was evaluated. Six months of CR lowered resting blood pressure (P\u3c0.05), as well as muscle sympathetic nerve activity burst frequency (48±8 to 39±11 bursts/min; P\u3c0.001) and burst incidence (81±7 to 66±17 bursts/100 heartbeats; P\u3c0.001), to levels that matched CTRL and improved sympathetic baroreflex sensitivity in CAD patients (P\u3c0.01). Heart rate variability (all P\u3e0.05) and cardiovagal baroreflex sensitivity (P=0.11) were unchanged following CR, yet values were not different pre-CR from CTRL (all P\u3e0.05). Furthermore, before CR, CAD patients displayed greater blood pressure and muscle sympathetic nerve activity reactivity to static handgrip versus CTRL (all P\u3c0.05); yet, responses were reduced following CR (all P\u3c0.05) to levels observed in CTRL. Conclusions Six months of exercise-based CR was associated with marked improvement in baseline autonomic function and neuro-cardiovascular stress reactivity in CAD patients, which may play a role in the reduced cardiac risk and improved survival observed in patients following exercise training

    Stabilities of nanohydrated thymine radical cations: insights from multiphoton ionization experiments and ab initio calculations

    Get PDF
    Multi-photon ionization experiments have been carried out on thymine-water clusters in the gas phase. Metastable H2O loss from T+(H2O)n was observed at n ≥ 3 only. Ab initio quantum-chemical calculations of a large range of optimized T+(H2O)n conformers have been performed up to n = 4, enabling binding energies of water to be derived. These decrease smoothly with n, consistent with the general trend of increasing metastable H2O loss in the experimental data. The lowest-energy conformers of T+(H2O)3 and T+(H2O)4 feature intermolecular bonding via charge-dipole interactions, in contrast with the purely hydrogen-bonded neutrals. We found no evidence for a closed hydration shell at n = 4, also contrasting with studies of neutral clusters

    Probing Local Wind and Temperature Structure Using Infrasound from Volcan Villarrica (Chile)

    Get PDF
    We use the continuous and intense (∼107 W) infrasound produced by Volcan Villarrica (Chile) to invert for the local dynamic wind and temperature structure of the atmosphere. Infrasound arrays deployed in March 2011 at the summit (2826 m) and on the NNW flank (∼8 km distant at 825 m) were used to track infrasound propagation times and signal power. We model an atmosphere with vertically varying temperature and horizontal winds and use propagation times (ranging from 23 to 24 s) to invert for horizontal slowness (2.75–2.94 s/km) and average effective sound speeds (328–346 m/s) for NNW propagating infrasound. The corresponding ratio of recorded acoustic power at proximal versus distal arrays was also variable (ranging between 0.15 to 1.5 for the peak 0.33–1 Hz infrasound band). Through application of geometrical ray theory in a uniform gradient atmosphere, these \u27amplification factors\u27 are modeled by effective sound speed lapse rates ranging from −15 to +4 m/s per km. NNW-projected wind speeds ranging from −20 m/s to +20 m/s at 2826 m and wind gradients ranging from −11 to +10 m/s per km are inferred from the difference between effective sound speed profiles and adiabatic sound speeds derived from local temperature observations. The sense of these winds is in general agreement with regional meteorological observations recorded with radiosondes. We suggest that infrasound probing can provide useful spatially averaged estimates of atmospheric wind structure that has application for both meteorological observation and volcanological plume dispersal modeling

    Optimal phase for coronary interpretations and correlation of ejection fraction using late-diastole and end-diastole imaging in cardiac computed tomography angiography: implications for prospective triggering

    Get PDF
    A typical acquisition protocol for multi-row detector computed tomography (MDCT) angiography is to obtain all phases of the cardiac cycle, allowing calculation of ejection fraction (EF) simultaneously with plaque burden. New MDCT protocols scanner, designed to reduce radiation, use prospectively acquired ECG gated image acquisition to obtain images at certain specific phases of the cardiac cycle with least coronary artery motion. These protocols do not we allow acquisition of functional data which involves measurement of ejection fraction requiring end-systolic and end-diastolic phases. We aimed to quantitatively identify the cardiac cycle phase that produced the optimal images as well as aimed to evaluate, if obtaining only 35% (end-systole) and 75% (as a surrogate for end-diastole) would be similar to obtaining the full cardiac cycle and calculating end diastolic volumes (EDV) and EF from the 35th and 95th percentile images. 1,085 patients with no history of coronary artery disease were included; 10 images separated by 10% of R–R interval were retrospectively constructed. Images with motion in the mid portion of RCA were graded from 1 to 3; with ‘1’ being no motion, ‘2’ if 0 to <1 mm motion, and ‘3’ if there is >1 mm motion and/or non-interpretable study. In a subgroup of 216 patients with EF > 50%, we measured left ventricular (LV) volumes in the 10 phases, and used those obtained during 25, 35, 75 and 95% phase to calculate the EF for each patient. The average heart rate (HR) for our patient group was 56.5 ± 8.4 (range 33–140). The distribution of image quality at all heart rates was 958 (88.3%) in Grade 1, 113 (10.42%) in Grade 2 and 14 (1.29%) in Grade 3 images. The area under the curve for optimum image quality (Grade 1 or 2) in patients with HR > 60 bpm for phase 75% was 0.77 ± 0.04 [95% CI: 0.61–0.87], while for similar heart rates the area under the curve for phases 75 + 65 + 55 + 45% combined was 0.92 ± 0.02. LV volume at 75% phase was strongly correlated with EDV (LV volume at 95% phase) (r = 0.970, P < 0.001). There was also a strong correlation between LVEF (75_35) and LVEF (95_35) (r = 0.93, P < 0.001). Subsequently, we developed a formula to correct for the decrement in LVEF using 35–75% phase: LVEF (95_35) = 0.783 × LVEF (75_35) + 20.68; adjusted R2 = 0.874, P < 0.001. Using 64 MDCT scanners, in order to acquire >90% interpretable studies, if HR < 60 bpm 75% phase of RR interval provides optimal images; while for HR > 60 analysis of images in 4 phases (75, 35, 45 and 55%) is needed. Our data demonstrates that LVEF can be predicted with reasonable accuracy by using data acquired in phases 35 and 75% of the R–R interval. Future prospective acquisition that obtains two phases (35 and 75%) will allow for motion free images of the coronary arteries and EF estimates in over 90% of patients

    Plankton Ecology

    Get PDF

    The Social and Ethical Acceptability of NBICs for Purposes of Human Enhancement: Why Does the Debate Remain Mired in Impasse?

    Get PDF
    The emergence and development of convergent technologies for the purpose of improving human performance, including nanotechnology, biotechnology, information sciences, and cognitive science (NBICs), open up new horizons in the debates and moral arguments that must be engaged by philosophers who hope to take seriously the question of the ethical and social acceptability of these technologies. This article advances an analysis of the factors that contribute to confusion and discord on the topic, in order to help in understanding why arguments that form a part of the debate between transhumanism and humanism result in a philosophical and ethical impasse: 1. The lack of clarity that emerges from the fact that any given argument deployed (arguments based on nature and human nature, dignity, the good life) can serve as the basis for both the positive and the negative evaluation of NBICs. 2. The impossibility of providing these arguments with foundations that will enable others to deem them acceptable. 3. The difficulty of applying these same arguments to a specific situation. 4. The ineffectiveness of moral argument in a democratic society. The present effort at communication about the difficulties of the argumentation process is intended as a necessary first step towards developing an interdisciplinary response to those difficulties
    corecore