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Abstract. This paper presents a formal verification framework and tool
that evaluates the robustness of software countermeasures against fault-
injection attacks. By modeling reference assembly code and its protected
variant as automata, the framework can generate a set of equations for
an SMT solver, the solutions of which represent possible attack paths.
Using the tool we developed, we evaluated the robustness of state-of-the-
art countermeasures against fault injection attacks. Based on insights
gathered from this evaluation, we analyze any remaining weaknesses and
propose applications of these countermeasures that are more robust.

Keywords: fault attack, countermeasure, formal proof

1 Introduction

More and more embedded systems, widely used in our everyday lives, hold infor-
mation that is both personal and confidential (e.g., smartphones, IoT devices,
passports, credit cards and SIM cards). These systems are subject to physical
attacks, among which are fault attacks, that aim at disrupting the execution of
programs running on a system to further an attacker’s personal gain. There ex-
ist various means for injecting faults, such as electromagnetic or laser radiation,
power or clock signal tampering, etc. [1, 2]. By causing a fault with a specific
effect, an attacker can cause sensitive information to be leaked. For example, it
has been proven that the well-known RSA encryption algorithm can be broken
by differential fault analysis [3, 4]. An attacker may also take control by interfer-
ing with the boot process, bypass protections to gain access to a service running
on a device, or overflow a buffer during a subroutine which is generating out-
put, which may cause leakage of sensitive personal data. Fault injection attacks
can also aid an attacker in subverting countermeasures against Simple Power
Analysis [5], thus allowing him to perform side-channel analysis of a program.
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Many countermeasures3 have been proposed to prevent faults from modify-
ing a program’s execution, both in hardware and in software. In any case, to
provide maximum security it is necessary to combine hardware and software
countermeasures. Software countermeasures have the advantage of not requiring
any hardware to be manufactured again in order to provide a stronger protection.
Moreover, industries such as smart card industries and mobile phone manufac-
turers often rely on pre-existing hardware on top of which they have to build
software security solutions.

Software countermeasures can be designed at different levels, such as at an
algorithmic level [6], in a high-level programming language [7–9] or at assembly
level [10–12]. While higher level countermeasures may be optimized away or
altered by a compiler, low-level countermeasures are compatible with existing
compilers and toolchains. Also, they allow a finer study of protections since they
are closer to the final code running on the chip and thus to the effect of a physical
attack. Protections are designed with respect to a fault model describing a set
of effects a fault can have at a certain level of abstraction [13]. For example, two
well-known fault models that describe a fault at a logical level are Single Event
Upset (SEU) and Multiple Event Upset (MEU). Examples of fault models that
describe a fault at assembly level include instruction skip (the execution of a
single instruction is skipped), instruction replacement (the execution of a single
instruction is replaced by the execution of another instruction), conditional jump
inversion, jump (modification of the program counter), etc.

Software countermeasures often rely on adding code and thus have an impact
on code size (memory footprint) and performance (number of executed instruc-
tions) of programs. This has important consequences for both security specialists
designing countermeasures and software designers applying them to their soft-
ware: they both aim to maximize security while minimizing overhead. Also, it
is of the utmost importance that the application of a countermeasure effectively
protects code the way it is intended. However, for security specialists designing
countermeasures, it is difficult to take into account every possible context in
which a certain type of fault can occur, and to predict every possible effect a
fault may have. Depending on the fault model taken into consideration, design
complexity increases exponentially in relation to the number of instructions that
have to be protected and the number of possible control flow transfers (e.g. calls
or conditional branches) in the code. To truly guarantee that a software coun-
termeasure works correctly, a formal proof is required, just as it is required to
truly guarantee that a program functions the way it was intended. In practice,
formally proving the correctness of software countermeasures is done only by few
experts, and it is very time-consuming.

In this paper we propose a formal setting and an automated environment to
check and evaluate the robustness of software countermeasures against faults by
examining code fragments representing applications of those countermeasures.
Using the formal framework, it is possible to guarantee that the application

3 Throughout this manuscript, we will use the terms countermeasure(s) and protec-
tion(s) interchangeably
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of a countermeasure on a reference code fragment is correct and robust with
respect to a given fault model. It also allows to aid in the design of new software
countermeasures by exhibiting weaknesses, and can therefore help developers to
test and deploy countermeasures more quickly. We illustrate the framework’s use
by evaluating the robustness of state-of-the-art protections, and we show how it
can aid in the design of effective countermeasures.

The remainder of this paper is structured as follows: first, Section 2 discusses
related work. The formal framework and the corresponding tool are presented
in Section 3. Section 4 evaluates the robustness of a number of well-known ex-
isting countermeasures. In this section, we will also show how our tool can help
enforce an existing countermeasure to be more robust. Finally, Section 5 draws
conclusions.

2 Related Work

Many works have proposed software countermeasures against physical fault at-
tacks. Software countermeasures are often based on temporal redundancy (i.e.
performing the same computation multiple times) to detect or tolerate errors
during computations [10, 12, 8, 11]. Control flow protection requires different
mechanisms to detect a modification of the execution flow [7, 14]. A generic
and automatic protection scheme for control flow integrity at C level has been
proposed in [7]. The major drawback of this approach is its distance to the ma-
chine code: some faults, occurring at assembly level, may be impossible to model
at source level due to the gap between the granularity of the fault at low level
(one instruction) and at source level (one C statement). Moreover, a source-level
protection may be removed by an optimizing compiler. A verification step at
assembly level is necessary.

Barenghi et. al. propose assembly-level countermeasures based on software
redundancy and parity checking to detect instruction skips [10]. The proposed
countermeasure scheme, based on instruction duplication and triplication, is
claimed to be robust against any single instruction skip fault. However, it be-
comes difficult to determine the effectiveness of this protection against other
fault models – and, more largely, of any protections on large code – without the
help of formal methods. There are different means to prove (security) properties:
model checking [12], SAT [15], SMT [16], taint analysis [17], rewriting rules using
modular arithmetic [6], use of a proof assistant like Coq [18], etc. Moro et al.
have proposed countermeasures and proved their tolerance against an instruction
skip using model checking with BDD [12]. In [7] the model checking approach
was used to design the generic protection scheme, without which it would have
been difficult, if not impossible, to elaborate a protection that defends against all
attacks for the considered fault model. However, model checking with BDD does
not allow representation of larger problems, since this technique faces combina-
torial explosion. Other formal methods like SAT/SMT do allow larger problems
to be modeled without requiring an unreasonable amount of time for verification.
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Bayrak et. al. have proposed a SAT-based tool to determine which instruc-
tion of a Boolean program is sensitive to power-analysis, according to a Ham-
ming weight uni-variate leakage model. Eldib et al. later proposed a SMT-based
technique to automatically build perfectly masked Boolean programs [16]. Both
methods target side channel attacks and are limited to specific assembly codes.

In his thesis [19], Moro showed that a significant percentage of faults induced
by electromagnetic waves can be modeled as instruction replacements (with re-
gard to the attacked microcontroller). This fault model remains rarely treated
by countermeasures in literature, despite the fact that it can describe a large
group of faults. While the countermeasure proposed by Barenghi et. al. [10]
should be able to detect some instruction replacement faults, the exact types of
replacements are not analyzed.

Fault attacks are a powerful means to break security. Despite the need for
assistance in countermeasure design, to the best of our knowledge, no study using
a formal method to evaluate the robustness of assembly countermeasures against
transient faults inducing instruction replacement has ever been proposed.

3 Robustness Evaluation Framework

In order to analyze the robustness of a hardened snippet of code, our frame-
work takes two inputs: one piece of reference code, which represents a fragment
of assembly code without any protection, and a hardened piece of code to be
compared to the reference code. Both faulted and non faulted executions of the
hardened code are considered, and compared with non faulted execution of the
reference code for robustness evaluation. In the representation of the protected
code, locations at which faults may occur are given, as well as the types of faults
that may occur during execution at each of these locations, and the type of ro-
bustness that is globally wanted. The robustness type is either fault tolerance
or fault detection. The notion ’type of fault’ refers to fault models the frame-
work is able to consider. Currently, instruction skip and a restricted version of
instruction replacement (detailed in Section 3.1) are available.

Figure 1 shows an overview of our approach. From the inputs described above,
the framework constructs a set of logical predicates whose satisfiability, which
can be determined with the help of a SMT solver, answers the question: “Is the
protected code robust against faults occurring during execution at the specified
locations?” The framework internally represents code as interpreted automata
and adds transitions that correspond to the effect of injected faults to the au-
tomaton representing hardened code. Robustness evaluation is then expressed
as a logical property referring to the unfolded automata which represent the
execution paths of the bounded execution of each automaton.

This process results in a SMT formulation of the robustness evaluation of
hardened code with respect to its corresponding reference code. The results
given by a SMT-solver determine whether the hardened code is robust, and can
also be interpreted to understand any vulnerabilities still present in the code.
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The following subsections detail the formal models that are used, the proof
scheme, and its representation with a propositional formula whose satisfiability
is checked.

Fig. 1. Global overview

3.1 Representation of Code with Automata

The assembly code we take into consideration is ARM Thumb2 assembly (al-
though basic operations are common to many assembly languages). Thus, the
registers correspond to all user registers, among which there are the program
counter, the stack pointer, the link register, and a conditional bit-wise regis-
ter called flags that keeps the status flags. Although registers have a width of
32 bits, we have built our framework to make it possible to limit the width of
registers to allow results to be calculated faster.

One way to check a property on a sequence of instructions is to model that
sequence by an interpreted finite automaton. An interpreted finite automaton
interferes with an external data domain by means of guarded-command transi-
tions: the values of the data domain can restrict the firability of the transitions
labelled by a guard (a Boolean expression over the data). The transition firing
can modify the values of the data, by applying the action labelling the transition.
In our case, each code excerpt is represented by such an interpreted automaton,
interacting with a data domain (let’s call it D) containing variables representing
registers (R0 – R15, flags) and addressed memory locations. Each state of the
automaton refers to a position of the program counter in the code, and each
transition is labelled with a couple (guard, action), representing the correspond-
ing assembly instruction of the code. The guard establishes the data condition
associated to the firability of the transition (the flag condition in case of a con-
ditional branch for instance). The action models the effect of the execution of
the instruction on the data variables. Moreover, each transition is labeled with
the set of registers that are alive after that transition. This information is used
to determine the attack that may affect program execution if launched at this
point during execution. The representation of assembly code as an automaton,
as well as the information on register liveness, can be produced by a compiler.
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Let’s consider a simple load from memory and its protected version with
duplication and detection, given on page 12 in Listing 7 and Listing 8 respec-
tively. A simplified representation of the automata that correspond to both code
fragments are given in Figure 2.

Fault Injection Faults are represented by added transitions whose effect on
variables depends on the fault model. Currently, two fault models can be speci-
fied : Instruction Skip and Simplified Instruction Replacement, respectively de-
noted as IS and SIR throughout the remainder of this text. In the IS fault model,
the instruction may be skipped. When this happens, the data variables are not
modified, but the program counter is set to the address of the next instruction.
This can be seen as executing a nop instruction. The instruction skip fault is
represented by a single transition which does not affect any register values. In
the SIR fault model, an (original) instruction may be replaced by another in-
struction. We restrict ourselves to the case where the replacing instruction can
not directly affect either the memory nor the normal control-flow. Thus, it can
not be a store into memory or a jump4. Although this fault model does not
model all possible instruction replacements, it allows to cover a significant set of
possible attacks. Moreover, understanding how to build countermeasures against
this simplified fault model is the first step in designing robust countermeasures
against “full” instruction replacement. This fault model is represented by a set
of transitions; each of them affects one register in the set of live output registers
of the associated instruction. In Figure 2, transitions that represent faults are
drawn as dotted lines. In this example, every instruction of the countermeasure
can be skipped (except for the second ldr instruction, which can be affected by
the SIR fault model).

For this paper, we expect a fault to occur at most once during the execution
of the hardened code snippet. However, the formal model can be easily modified
to accommodate any (bounded) number of faults, at the expense of increased
verification time. The number of faults restrict the firability of fault transitions:
in case of one single fault, a boolean variable is added and set once a fault
occurred, and all faulty transitions are guarded with a condition specifying that
no fault previously occurred. Using a counter for the condition would allow to
model the occurrence of several faults.

3.2 Robustness Proof Scheme

The robustness of the hardened code is formally assessed by comparing the sets
of behaviors of the reference and hardened code fragments. This comparison is
performed by checking dedicated properties on the set of bounded execution
traces produced by the automata of both fragments (Ao and Ac for the automa-
ton of the original code and that of the hardened code, respectively).

4 Seeing as a fault can, however, corrupt flags and/or register contents, control-flow
and memory content can be affected indirectly.
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Fig. 2. Proof scheme: Automata of Listing 8 and its unhardened code

The properties to be verified depend on the type of robustness under con-
sideration: in case of tolerance, one must ensure that, for any fault occurring
once in any place of Ac, at given observation points, a set of variables S ⊆ D
specified by the designer have exactly the same value at these points; in case
of detection, one must ensure that, for any fault occurring once in any place
of Ac, either no fault is detected and the two automata end their execution in
correct observation points with identical values in all variables of S, or Ac ends
in a fault detection observation point. Those states of both automata that are
observation points are specified by designer. In most occasions we encountered,
the observation points are the final or fault detection states of both automata.
An example is given in Figure 2, where observations points are surrounded by
dotted squares.

The verification of these properties is performed in three steps: 1) Automata
unfolding, 2) Automata combination and property construction, 3) Satisfiability
check with the help of a SMT solver and counter-example analysis.

SMT Representation of Automata: Unfolding From the internal repre-
sentation of automata, the framework computes all possible paths from initial
states to the deepest observation points. In other words, the automata are un-
folded. In case of loops, some bounds are given to the framework to make it
able to compute these paths. As an example, Figure 3 represents the unfolded
automaton of the instruction duplication countermeasure in Listing 8, along 5
steps. Notice that, because of the condition on transitions, not all paths can be
taken. As an example, paths involving two faulty transitions are not possible,
and thus our framework will not consider them as possible attack paths. On each
possible path, a transition, faulty or not, corresponds to one execution step. The
beginning of the path is at step 0 and each transition on the computed exe-
cution paths is numbered. Using the execution paths and this numbering, the
framework derives a SMT formulation describing all possible evaluations of the
registers, flags and memory locations (variables of D) from an initial state.

To represent the evolution of a variable, we must declare as many logical
variables as the number of the unfolding steps: a variable from a certain step i
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Fig. 3. Unfolded automaton of Listing 8

is calculated with the variables at step i-1 as showed by the magnifying glass
above a transition in Figure 3.

The SMT formulation is computed recursively: Let A be an automaton (either
Ao or Ac), SMT 0..i(A) the set of logical constraints related to the automaton
A unfolded from step 0 to step i (i.e expressing all execution paths of length
i), and TRi+1 the set of logical constraints which represents all the possible
transitions of A at step i+1. The formula below shows the recursive construction
of SMT 0..i+1(A):

SMT 0..i+1(A) = TRi+1 ∧ SMT 0..i(A)

SMT Representation of Automata: Combination and Properties Let
n and m be the number of execution steps to reach all the observation points of
Ao and Ac respectively (with respect to the specific number of iterations in case
of loops). To determine if a hardened code is robust, we try to find if a weakness
exists. This can be expressed with the following formula:

Form = SMT 0..n(Ao) ∧ SMT 0..m(Ac) ∧ prop

where prop expresses the properties of robustness, as explained in section 3.2.

3.3 Verification and results

The robustness property can be divided into a set of K independent sub-properties
denoted spropi, each focusing on one couple of observation points of Ao and Ac

and one variable of S whose value must be equal for both assembly codes at the
observation points. The formula becomes:

Form = SMT 0..n(Ao) ∧ SMT 0..m(Ac) ∧
∧K

i=0 spropi

=
∨K

i=0( SMT 0..n(Ao) ∧ SMT 0..m(Ac) ∧ spropi )

The formula can thus be divided into a set of sub-formulae, the disjunction of
which defines the main formula Form. If one sub-formula is satisfiable, then the
main formula is satisfiable. Thus, each sub-formula can be solved independently.
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We can further simplify the size of the sub-problems to solve by forcing a specific
faulty transition in each sub-problem. Thus Form can be expressed as a set of

sub-formulae that each focus on a specific fault. Let A
fj
c be the automaton Ac

where only the fault transition fj is represented:

Form =
∨

fj

∨K
i=0( SMT 0..n(Ao) ∧ SMT 0..m(A

fj
c ) ∧ spropi )

All sub-formula can be solved in parallel by different processors, which makes
solving the problem significantly faster. Moreover, this technique enables a user
to precisely know the instructions, variables of D, and execution steps to be
corrupted (this information is given by the faulty transition) in order to get
an erroneous value for some variables of S. The corrupted variables of S at the
observation points are also known. This decomposition is therefore helpful for
finding and understanding all possible attack paths to bypass the security of an
assembly-level countermeasure for a given fault model.

4 Evaluating and Improving Robustness of
Countermeasures

This section illustrates the usefulness of our approach by analyzing the robust-
ness of existing protections. We show that our formal approach enables to ensure
whether a certain protection is robust with regard to a specific type of fault, and
that it can precisely expose any remaining weaknesses.
For each protection, we also propose an improved upon application that offers
more extensive security. These improvements were developed with the aid of our
formal approach. Note that we do not make any claims concerning the efficiency
of these new countermeasures: we can prove that they offer superior protection,
but this may come at a high overhead cost. More efficient variants offering the
same amount of protection may exist.

We have chosen three existing protections for this evaluation, which are de-
scribed in detail in the sections to follow.

1. Memory store verification, seeing as it is a very basic technique that is often
used in industry.

2. Loop iteration counter duplication, because it attempts to guard the con-
trol flow of a loop, and uses some clever tricks to do so (e.g. inverting the
condition of a branch) [20].

3. instruction duplication, since the principal idea behind this technique is
widely applicable [12].

4.1 Memory Store Verification

A simple and well-known technique to verify whether data has been correctly
written to memory, is to load that data from memory into a (free) register
immediately after storing it, and comparing it to the register still holding the
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value that was stored. If both values are the same, then program execution can
continue normally. If they differ, this indicates a fault has taken place. In the
latter case, any fault handling code or mechanism may be executed to abort
or possibly restore execution of the program. Note that, while this protection
technique does not guarantee that data cannot be altered in memory after it has
been written, it can be combined with error-correcting codes that protect the
memory’s integrity.

The protection technique described above was implemented (among others)
by De Keulenaer et. al. in a prototype link-time code rewriter [20], to show that
it is possible to apply those protections automatically, and with an acceptable
overhead. The technique we describe here is referred to by the authors as memory
store verification. Listing 1 shows a sequence of instructions containing a store
operation to be protected.

Listing 1. Original code

1 mov r0 , #imm

2 mov r1 , @data0

3 subs r0, r0, #1

4 str r0 , [r1]

5 beq .label

Listing 2. Improved protection

1 mov r0 , #imm

2 mov r0 , #imm

3 mov r1 @data0

4 mov r1 @data0

5 subs rx, r0, #1

6 subs rx, r0, #1

7 str rx , [r1]

8 str rx , [r1]

9 beq .label

10 beq .label

Listing 3. Protected code

1 mov r0 , #imm

2 mov r1 , @data0

3 subs r0, r0, #1

4 str r0 , [r1]

5 ldr r2 , [r1]

6 cmp r0 , r2

7 beq .correct

8 <fault handling code >

9 .correct :

10 cmp r0 , #0

11 beq .label

Listing 3 shows a protected version of the code fragment. The countermeasure
aims to protect the store instruction at line 4 in the aforementioned listing
against an instruction skip. The instruction at line 10 was inserted to recompute
the flags.

Both the original code fragment and the protected variant were transcribed
for use by our formal verification framework. This enabled us to find vulnerabil-
ities remaining in the protected code. They relate to the first three instructions,
that determine the memory address r1 and the value of r0 which should be
stored to memory. The wrong value of r0 can change the outcome of the cmp

instruction (at line 10 in Listing 3), leading control flow down the wrong path.
This cannot be detected by loading the value from memory again and compar-
ing it, since the store operation itself was executed correctly. If the first or the
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third instruction is skipped, the memory, flags and control-flow may all become
corrupted.

Moro et al. proposed a countermeasure pattern [12] which can be applied to
protect the store instruction (as well as the instructions that contribute to the
value in r0 and r1), and which is based on instruction duplication. Note that this
scheme offers fault resilience, whereas the protection applied by De Keulenaer
et al. offers fault detection. Listing 2 shows the result of applying the aforemen-
tioned countermeasure pattern proposed by Moro et al., and further optimizing
it. Using our framework, we were able to prove its robustness against a single
instruction skip fault. Besides protecting the store operation itself, which was
already accomplished in the application of the original protection, this protec-
tion ensures that the correct value will always be written to the correct memory
address. The direction of control flow at the end of the fragment is also protected.

4.2 Loop Iteration Counter Duplication

Another countermeasure implemented by De Keulenaer et al. aims to protect
the number of iterations of a loop [20]. An unprotected code fragment is shown
in Listing 4, whereas Listing 6 shows the same code fragment after protection.

Listing 4. Original code

1 .preheader :

2 mov r2 , r0

3 .body :

4 add r2 , r2 , #1

5 sub r1 , r1 , #1

6 cmp r1 , #0

7 bne .body

8 .after :

Listing 5. Improved protection

1 mov r2 , r0

2 mov r5 , r1

3 .body :

4 add r2 , r2 , #1

5 sub r1 , r1 , #1

6 sub r5 , r5 , #1

7 cmp r1 , r5

8 bne .fault

9 cmp r1 , #0

10 cmp r1 , #0

11 bne .body

12 bne .body

13 .end :

14 ...

15 .fault :

16 <fault handling code >

Listing 6. Protected code

1 .preheader :

2 mov r2 , r0

3 mov r5 , r1

4 .body :

5 add r2 , r2 , #1

6 sub r1 , r1 , #1

7 sub r5 , r5 , #1

8 cmp r1 , #0

9 bne .check2

10 .check1 :

11 cmp r5 , #0

12 beq .after

13 <fault handling code >

14 .check2 :

15 cmp r5 , #0

16 bne .body

17 <fault handling code >

18 .after :
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The loop iteration counter duplication protection was proven secure by our
formal verification framework; i.e. it is able to protect the number of iterations
of the loop by successfully detecting any single instruction skip, as claimed by
the authors.

However, this protection does have one inherent weakness, because the counter
is checked against its duplicate only when exiting from the loop. If, because of
a fault, either the iteration counter or its duplicate is not decremented during
a certain iteration, execution may continue for a long time before this is de-
tected (e.g. for a high value of the counter). While it is practically unfeasible for
an attacker to prevent both the iteration counter and its duplicate from being
decremented during a single loop iteration, he may be able to prevent the it-
eration counter from being decremented during one iteration, and subsequently
prevent the duplicate counter from being decremented many iterations later,
before either counter hits zero. If he succeeds in doing this, he has successfully
changed the number of loop iterations without this being detected. Indeed, such
an attack does imply that two faults are injected. However, given the possibility
of a large enough time-frame, we deem this to be feasible.

For this specific application of the loop iteration counter duplication, a possi-
ble improvement is shown in Listing 5. In this variant, the original loop counter
is compared to its duplicate during every iteration of the loop. This means any
modification to either the counter or its duplicate will never go undetected for
more than one iteration of the loop. By duplicating the cmp and bne instruc-
tions, we ensure that the loop will always be executed the right amount of times.
This is because it is practically unfeasible for an attacker to inject a fault in two
subsequent instructions.

4.3 Instruction Duplication

Barenghi et. al. explored countermeasures and detections against fault attacks
based on software redundancy [10]. Listings 7 and 8 illustrate how these tech-
niques can be used to protect a load instruction.

Listing 7. Original code

1 ldr r4 , [r7]

Listing 8. Protected code

1 ldr r4 , [r7]

2 ldr r12 , [r7]

3 cmp r4 , r12

4 bne .fault

5 ...

6 .fault :

7 <fault handling code >

Listing 9. Improved protection

1 mov r7 , @data0

2 ldr r4 , [r7]

3 ldr r12 , [r7]

4 mov r7 , @data0

5 ldr r12 , [r7]

6 msr apsr , #0

7 cmp r4 , r12

8 beq .end

9 b .fault

10 .end :

11 ...

12 .fault :

13 <fault handling code >
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Using our framework, we were able to prove the robustness of this protection
technique against a single instruction skip fault, as claimed (but not proven)
by the authors. We also determined whether this protection technique is robust
with regard to the SIR fault model. The results are shown in Table 1.

The first column in this table shows the instruction which is modified by a
simplified instruction replacement fault. For that instruction, the second column
shows which registers are alive after the instruction has been executed, and the
third column shows how a replacement can lead to a faulty value of one of those
registers. Note that not all values of x lead to a faulty value of one of the live
registers. At this time, our tool does not yet output the complete set of values
for x that can corrupt one of the registers. While we have planned this as future
work, for this manuscript we have deduced the success conditions given in the
last column from the output of our tool.

instruction
replaced

alive
variables

new
instruction success condition

ldr r4, [r7] r4, r7 r7← x Mem[x] = r4 ∧ r4 6= Mem[r7]

ldr r12, [r7] r4, r12 r4← x x = r12 ∧ r12 6= Mem[r7]

cmp r4, r12 r4, flags.Z r4← x x 6= Mem[r7] ∧ flags.Z = 1

bne .fault r4 r4← x x 6= Mem[r7]

Table 1. Results of the robustness evaluation: attack paths to corrupt r4

For a more detailed discussion, let’s focus on the first row in the table. Reg-
isters r4 and r7 are alive after the execution of ldr r4, [r7]. Among them,
only the corruption of register r7 by an address x, the contents of which must
differ from memory case Mem[r7], can affect the final state of the register r4.

Table 1 shows that a simplified instruction replacement fault can bypass the
security of any instruction in the protected code fragment. However, not all of
these faults have the same probability of occurrence. Only one specific value of x
can lead to an erroneous value of r4 if ldr r12, [r7] is attacked (if x is equal
to the initial value of r12), whereas only one specific value of x will not corrupt
the final state of r4 if bne .fault is attacked and r4 corrupted.

The insights we have acquired allowed us to come up with a more robust
application of the instruction duplication countermeasure, one that can be used
to protect the load instruction against a simplified instruction replacement fault.
The improved upon application is shown in Listing 9. In this listing, the value to
be loaded from memory is stored at address @data0. As we have shown earlier,
register r7, which contains this address, is a sensitive register. In order to prevent
r7 from getting an erroneous value which, in turn, leads r12 to have the wrong
value loaded from memory, the latter had to be re-affected by @data0 (at line 4
in the aforementioned listing), between the first and second occurrence of ldr

r4, [r7]. That instruction was in fact duplicated to prevent a single fault on
this instruction to corrupt r4 with the initial value of r12: a fault affecting the
first ldr r4, [r7] will not bypass the countermeasure since the second one will
affect r12 with the correct value. The countermeasure is thus able to detect an
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erroneous value in r4. A fault affecting the second ldr r4, [r7] will always be
detected as well, since either r4 or r12 already have the correct value.

In Listing 8, cmp r4, r12 can lead to corruption of r4 if the replacing in-
struction affects r4 and if the Z (zero) flag is set to true. Keeping the value
true in flags.Z prevents the branch instruction from jumping to .fault. To
avoid this, msr apsr, #0 was added at line 6 in Listing 9. This instruction sets
all flags to false, so the branch instruction will always go to the fault detection
state if r4 is corrupted.

The fourth instruction of Listing 8 is the most vulnerable one. If r4 is cor-
rupted, only one value for x doesn’t lead to an erroneous state of r4. Also, the
last instruction of an application of a countermeasure is always more difficult to
secure, since there is no instruction after its execution to detect the fault. One
solution is to execute the last instruction (whose purpose is to branch to the
fault detection state) only if a fault occurs before its execution. Otherwise, the
countermeasure must have already detected that r4 has the correct value. This
mechanism is implemented at lines 8 and 9 of Listing 9. This technique ensures
that b .fault is executed only if a fault has already occurred. It also ensures
that the control flow is subverted away from the countermeasure’s basic block
before it reaches the last instruction; the code that starts at label end can detect
the fault.

Hence, the improved countermeasure shown in Listing 9 is robust against
the simplified instruction replacement fault model. It guarantees that register
r4 (and, by extension, r12) will always have the corrected value loaded from the
memory address r7. Developing an improved countermeasure so quickly would
have been very difficult, or even impossible, without the aid of our formal veri-
fication framework, because of the human brain’s limited capacity to enumerate
all vulnerabilities that are present in a fragment of assembly code.

4.4 Discussion

Seeing as the proof is divided in a set of independent sub-proofs (see Section 3.3),
the total sequential verification time is the sum of the verification times of each
sub-formula. The verification time of a sub-formula depends on the property
being proved. Alos, for both the sub-proof and the proof in its entirety, the
verification time is sensitive with regard to the complexity of the assembly code
(register dependency, control flow, instruction mix, . . . ), its length and the fault
model taken into consideration. Explaining why, however, would lead us too far
away from the context of this paper.

Concerning the time needed for our approach for the robustness evaluation,
proving the robustness of the improved countermeasure (Listing 9) required the
longest time, which was 10.7 s using a laptop computer (Intel R© CoreTM i3-
3120M, CPU 4 × 2.50GHz). In this case, the proof was divided into about
100 sub-proofs. The longest verification time for one such sub-proof was 90 ms.
Without this decomposition, not only would the evaluation time have been at
least one order of magnitude higher, but it would not have been possible to
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easily obtain the different attack paths in the initial version, and to construct
the improved countermeasure.

For analyzing an entire code, our approach requires to decompose this code
into pieces, the robustness of each piece to be analyzed separately. With the
fault models considered in this paper and the robustness defined as the equiv-
alence of the content of live registers and memory at some control points, this
decomposition into small sequences of instructions enables the verification of
large code.

5 Conclusions

We presented a formal verification method for evaluating the robustness of ex-
isting fault-injection countermeasures, which models code fragments as simple
automata, and implemented this functionality in the form of a tool. This tool
can also assist in improving existing countermeasures, as well as in the develop-
ment of new countermeasures, as we have shown in this paper. Currently, the
ARMv7-M (Thumb2) ISA is supported, but we estimate the porting of our tool
to another assembly instruction set to be a matter of weeks. We believe the
features of our formal verification framework are promising, and that there are
many possible directions for this research as far as future work is concerned.

What we would like to do next, is to investigate metrics of robustness to
classify countermeasures according to their strength (i.e. how robust they are
against a certain type of fault). We also plan to study possible ways to reduce the
verification cost for supporting a full instruction replacement fault model (which
takes into account jumps and store instructions). Another research direction we
are currently exploring is how we can combine the functionality of the formal
verification framework with an automated code rewriting tool. This would allow
to generate an automaton description representation of every single instance
of an applied protection, which in turn will allow to verify whether all of the
sensitive code that is to be protected, is in fact robust against a certain type of
fault.
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