3,874 research outputs found

    On the equivalence of the Langevin and auxiliary field quantization methods for absorbing dielectrics

    Get PDF
    Recently two methods have been developed for the quantization of the electromagnetic field in general dispersing and absorbing linear dielectrics. The first is based upon the introduction of a quantum Langevin current in Maxwell's equations [T. Gruner and D.-G. Welsch, Phys. Rev. A 53, 1818 (1996); Ho Trung Dung, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998); S. Scheel, L. Kn\"{o}ll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998)], whereas the second makes use of a set of auxiliary fields, followed by a canonical quantization procedure [A. Tip, Phys. Rev. A 57, 4818 (1998)]. We show that both approaches are equivalent.Comment: 7 pages, RevTeX, no figure

    Charge disproportionation and the pressure-induced insulator?metal transition in cubic perovskite PbCrO3

    Get PDF
    The perovskite PbCrO3 is an antiferromagnetic insulator. However, the fundamental interactions leading to the insulating state in this single-valent perovskite are unclear. Moreover, the origin of the unprecedented volume drop observed at a modest pressure of P = 1.6 GPa remains an outstanding problem. We report a variety of in situ pressure measurements including electron transport properties, X-ray absorption spectrum, and crystal structure study by X-ray and neutron diffraction. These studies reveal key information leading to the elucidation of the physics behind the insulating state and the pressure-induced transition. We argue that a charge disproportionation 3Cr4+ → 2Cr3+ + Cr6+ in association with the 6s-p hybridization on the Pb2+ is responsible for the insulating ground state of PbCrO3 at ambient pressure and the charge disproportionation phase is suppressed under pressure to give rise to a metallic phase at high pressure. The model is well supported by density function theory plus the correlation energy U (DFT+U) calculations.Fil: Cheng, Jinguang. University Of Texas At Austin; Estados Unidos. Chinese Academy Of Sciences; República de China. University of Tokyo. Institute for Solid State Physics; JapónFil: Kweon, K. E.. University Of Texas At Austin; Estados UnidosFil: Larregola, Sebastian Alberto. University Of Texas At Austin; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Ding, Yang. Argonne National Laboratory; Estados UnidosFil: Shirako, Y.. University Of Texas At Austin; Estados UnidosFil: Marshall, L. G.. University Of Texas At Austin; Estados Unidos. Northeastern University; Estados UnidosFil: Li, Z. Y.. University Of Texas At Austin; Estados UnidosFil: Li, X.. University Of Texas At Austin; Estados UnidosFil: Dos Santos, António M.. Oak Ridge National Laboratory. Quantum Condensed Matter Division; Estados UnidosFil: Suchomel, M. R.. Argonne National Laboratory; Estados UnidosFil: Matsubayashi, K.. University of Tokyo. Institute for Solid State Physics; JapónFil: Uwatoko, Y.. University of Tokyo. Institute for Solid State Physics; JapónFil: Hwang, G. S.. University Of Texas At Austin; Estados UnidosFil: Goodenough, John B.. University Of Texas At Austin; Estados UnidosFil: Zhou, J. S.. University Of Texas At Austin; Estados Unido

    Upsilon (1S+2S+3S) production in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and cold-nuclear matter effects

    Full text link
    The three Upsilon states, Upsilon(1S+2S+3S), are measured in d+Au and p+p collisions at sqrt(s_NN)=200 GeV and rapidities 1.2<|y|<2.2 by the PHENIX experiment at the Relativistic Heavy-Ion Collider. Cross sections for the inclusive Upsilon(1S+2S+3S) production are obtained. The inclusive yields per binary collision for d+Au collisions relative to those in p+p collisions (R_dAu) are found to be 0.62 +/- 0.26 (stat) +/- 0.13 (syst) in the gold-going direction and 0.91 +/- 0.33 (stat) +/- 0.16 (syst) in the deuteron-going direction. The measured results are compared to a nuclear-shadowing model, EPS09 [JHEP 04, 065 (2009)], combined with a final-state breakup cross section, sigma_br, and compared to lower energy p+A results. We also compare the results to the PHENIX J/psi results [Phys. Rev. Lett. 107, 142301 (2011)]. The rapidity dependence of the observed Upsilon suppression is consistent with lower energy p+A measurements.Comment: 495 authors, 11 pages, 9 figures, 5 tables. Submitted to Phys. Rev. C. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Inclusive cross section and double helicity asymmetry for pi^0 production in p+p collisions at sqrt(s) = 62.4 GeV

    Full text link
    The PHENIX experiment presents results from the RHIC 2006 run with polarized proton collisions at sqrt(s) = 62.4 GeV for inclusive pi^0 production at mid-rapidity. Unpolarized cross section results are measured for transverse momenta p_T = 0.5 to 7 GeV/c. Next-to-leading order perturbative quantum chromodynamics calculations are compared with the data, and while the calculations are consistent with the measurements, next-to-leading logarithmic corrections improve the agreement. Double helicity asymmetries A_LL are presented for p_T = 1 to 4 GeV/c and probe the higher range of Bjorken_x of the gluon (x_g) with better statistical precision than our previous measurements at sqrt(s)=200 GeV. These measurements are sensitive to the gluon polarization in the proton for 0.06 < x_g < 0.4.Comment: 387 authors from 63 institutions, 10 pages, 6 figures, 1 table. Submitted to Physical Review D. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Medium modification of jet fragmentation in Au+Au collisions at sqrt(s_NN)=200 GeV measured in direct photon-hadron correlations

    Full text link
    The jet fragmentation function is measured with direct photon-hadron correlations in p+p and Au+Au collisions at sqrt(s_NN)=200 GeV. The p_T of the photon is an excellent approximation to the initial p_T of the jet and the ratio z_T=p_T^h/p_T^\gamma is used as a proxy for the jet fragmentation function. A statistical subtraction is used to extract the direct photon-hadron yields in Au+Au collisions while a photon isolation cut is applied in p+p. I_ AA, the ratio of jet fragment yield in Au+Au to that in p+p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy loss in the medium, is seen at high z_T. The fragment yield at low z_T is enhanced at large angles. Such a trend is expected from redistribution of the lost energy into increased production of low-momentum particles.Comment: 562 authors, 70 insitutions, 8 pages, and 3 figures. Submitted to Phys. Rev. Lett. v2 has minor changes to improve clarity. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    Centrality Dependence of Charged Particle Multiplicity in Au-Au Collisions at sqrt(s_NN)=130 GeV

    Full text link
    We present results for the charged-particle multiplicity distribution at mid-rapidity in Au - Au collisions at sqrt(s_NN)=130 GeV measured with the PHENIX detector at RHIC. For the 5% most central collisions we find dNch/dηη=0=622±1(stat)±41(syst)dN_{ch}/d\eta_{|\eta=0} = 622 \pm 1 (stat) \pm 41 (syst). The results, analyzed as a function of centrality, show a steady rise of the particle density per participating nucleon with centrality.Comment: 307 authors, 43 institutions, 6 pages, 4 figures, 1 table Minor changes to figure labels and text to meet PRL requirements. One author added: M. Hibino of Waseda Universit

    Transverse energy production and charged-particle multiplicity at midrapidity in various systems from sNN=7.7\sqrt{s_{NN}}=7.7 to 200 GeV

    Full text link
    Measurements of midrapidity charged particle multiplicity distributions, dNch/dηdN_{\rm ch}/d\eta, and midrapidity transverse-energy distributions, dET/dηdE_T/d\eta, are presented for a variety of collision systems and energies. Included are distributions for Au++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200, 130, 62.4, 39, 27, 19.6, 14.5, and 7.7 GeV, Cu++Cu collisions at sNN=200\sqrt{s_{_{NN}}}=200 and 62.4 GeV, Cu++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, U++U collisions at sNN=193\sqrt{s_{_{NN}}}=193 GeV, dd++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, 3^{3}He++Au collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV, and pp++pp collisions at sNN=200\sqrt{s_{_{NN}}}=200 GeV. Centrality-dependent distributions at midrapidity are presented in terms of the number of nucleon participants, NpartN_{\rm part}, and the number of constituent quark participants, NqpN_{q{\rm p}}. For all AA++AA collisions down to sNN=7.7\sqrt{s_{_{NN}}}=7.7 GeV, it is observed that the midrapidity data are better described by scaling with NqpN_{q{\rm p}} than scaling with NpartN_{\rm part}. Also presented are estimates of the Bjorken energy density, εBJ\varepsilon_{\rm BJ}, and the ratio of dET/dηdE_T/d\eta to dNch/dηdN_{\rm ch}/d\eta, the latter of which is seen to be constant as a function of centrality for all systems.Comment: 706 authors, 32 pages, 20 figures, 34 tables, 2004, 2005, 2008, 2010, 2011, and 2012 data. v2 is version accepted for publication in Phys. Rev.

    Measurement of high-p_T Single Electrons from Heavy-Flavor Decays in p+p Collisions at sqrt(s) = 200 GeV

    Get PDF
    The momentum distribution of electrons from decays of heavy flavor (charm and beauty) for midrapidity |y| < 0.35 in p+p collisions at sqrt(s) = 200 GeV has been measured by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC) over the transverse momentum range 0.3 < p_T < 9 GeV/c. Two independent methods have been used to determine the heavy flavor yields, and the results are in good agreement with each other. A fixed-order-plus-next-to-leading-log pQCD calculation agrees with the data within the theoretical and experimental uncertainties, with the data/theory ratio of 1.72 +/- 0.02^stat +/- 0.19^sys for 0.3 < p_T < 9 GeV/c. The total charm production cross section at this energy has also been deduced to be sigma_(c c^bar) = 567 +/- 57^stat +/- 224^sys micro barns.Comment: 375 authors from 57 institutions, 6 pages, 3 figures. Submitted to Physical Review Letters. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore