35 research outputs found

    Detection of Bronchial Neoplasia in Uranium Miners by Autofluorescence Endoscopy (SAFE-1000)

    Get PDF
    The increase in the detection rate for premalignant changes of bronchial epithelium was studied in 56 symptom-free volunteers from the risk group of Czech uranium miners (mean age 50.69 years, mean WLM 21.06 (1 Working Level Month is equal to the absorption of latent energy of 2.08 × 10–5 J/m3 in one month, i.e. 170 working hours)) by the additional employment of the System of Autofluorescence Endoscopy (SAFE-1000 Pentax) to conventional white-light bronchoscopy, comparing results with those of bronchial biopsy histopathology examination. Histopathology using hematoxylin and eosin staining confirmed intraepithelial neoplasias in 15 areas in 10 persons. White-light bronchoscopy sensitivity was 21.05%, and specificity 93.7% which an autofluorescence bronchoscopy sensitivity was 78.95% and specificity 81.89%

    Homoeologous gene silencing in tissue cultured wheat callus

    Get PDF
    Abstract Background In contrast to diploids, most polyploid plant species, which include the hexaploid bread wheat, possess an additional layer of epigenetic complexity. Several studies have demonstrated that polyploids are affected by homoeologous gene silencing, a process in which sub-genomic genomic copies are selectively transcriptionally inactivated. This form of silencing can be tissue specific and may be linked to developmental or stress responses. Results Evidence was sought as to whether the frequency of homoeologous silencing in in vitro cultured wheat callus differ from that in differentiated organs, given that disorganized cells are associated with a globally lower level of DNA methylation. Using a reverse transcription PCR (RT-PCR) single strand conformation polymorphism (SSCP) platform to detect the pattern of expression of 20 homoeologous sets of single-copy genes known to be affected by this form of silencing in the root and/or leaf, we observed no silencing in any of the wheat callus tissue tested. Conclusion Our results suggest that much of the homoeologous silencing observed in differentiated tissues is probably under epigenetic control, rather than being linked to genomic instability arising from allopolyploidization. This study reinforces the notion of plasticity in the wheat epi-genome.</p

    Genome-wide repeat dynamics reflect phylogenetic distance in closely related allotetraploid Nicotiana (Solanaceae)

    Get PDF
    Nicotiana sect. Repandae is a group of four allotetraploid species originating from a single allopolyploidisation event approximately 5 million years ago. Previous phylogenetic analyses support the hypothesis of N. nudicaulis as sister to the other three species. This is concordant with changes in genome size, separating those with genome downsizing (N. nudicaulis) from those with genome upsizing (N. repanda, N. nesophila, N. stocktonii). However, a recent analysis reflecting genome dynamics of different transposable element families reconstructed greater similarity between N. nudicaulis and the Revillagigedo Island taxa (N. nesophila and N. stocktonii), thereby placing N. repanda as sister to the rest of the group. This could reflect a different phylogenetic hypothesis or the unique evolutionary history of these particular elements. Here we re-examine relationships in this group and investigate genome-wide patterns in repetitive DNA, utilising high-throughput sequencing and a genome skimming approach. Repetitive DNA clusters provide support for N. nudicaulis as sister to the rest of the section, with N. repanda sister to the two Revillagigedo Island species. Clade-specific patterns in the occurrence and abundance of particular repeats confirm the original (N. nudicaulis (N. repanda (N. nesophila ? N. stocktonii))) hypothesis. Furthermore, overall repeat dynamics in the island species N. nesophila and N. stocktonii confirm their similarity to N. repanda and the distinctive patterns between these three species and N. nudicaulis. Together these results suggest that broad-scale repeat dynamics do in fact reflect evolutionary history and could be predicted based on phylogenetic distance

    Independent, Rapid and Targeted Loss of Highly Repetitive DNA in Natural and Synthetic Allopolyploids of Nicotiana tabacum

    Get PDF
    Allopolyploidy (interspecific hybridisation and polyploidy) has played a significant role in the evolutionary history of angiosperms and can result in genomic, epigenetic and transcriptomic perturbations. We examine the immediate effects of allopolyploidy on repetitive DNA by comparing the genomes of synthetic and natural Nicotiana tabacum with diploid progenitors N. tomentosiformis (paternal progenitor) and N. sylvestris (maternal progenitor). Using next generation sequencing, a recently developed graph-based repeat identification pipeline, Southern blot and fluorescence in situ hybridisation (FISH) we characterise two highly repetitive DNA sequences (NicCL3 and NicCL7/30). Analysis of two independent high-throughput DNA sequencing datasets indicates NicCL3 forms 1.6–1.9% of the genome in N. tomentosiformis, sequences that occur in multiple, discontinuous tandem arrays scattered over several chromosomes. Abundance estimates, based on sequencing depth, indicate NicCL3 is almost absent in N. sylvestris and has been dramatically reduced in copy number in the allopolyploid N. tabacum. Surprisingly elimination of NicCL3 is repeated in some synthetic lines of N. tabacum in their forth generation. The retroelement NicCL7/30, which occurs interspersed with NicCL3, is also under-represented but to a much lesser degree, revealing targeted elimination of the latter. Analysis of paired-end sequencing data indicates the tandem component of NicCL3 has been preferentially removed in natural N. tabacum, increasing the proportion of the dispersed component. This occurs across multiple blocks of discontinuous repeats and based on the distribution of nucleotide similarity among NicCL3 units, was concurrent with rounds of sequence homogenisation

    DNA Methylation and Histone Modifications Regulate De Novo Shoot Regeneration in Arabidopsis by Modulating WUSCHEL Expression and Auxin Signaling

    Get PDF
    Plants have a profound capacity to regenerate organs from differentiated somatic tissues, based on which propagating plants in vitro was made possible. Beside its use in biotechnology, in vitro shoot regeneration is also an important system to study de novo organogenesis. Phytohormones and transcription factor WUSCHEL (WUS) play critical roles in this process but whether and how epigenetic modifications are involved is unknown. Here, we report that epigenetic marks of DNA methylation and histone modifications regulate de novo shoot regeneration of Arabidopsis through modulating WUS expression and auxin signaling. First, functional loss of key epigenetic genes—including METHYLTRANSFERASE1 (MET1) encoding for DNA methyltransferase, KRYPTONITE (KYP) for the histone 3 lysine 9 (H3K9) methyltransferase, JMJ14 for the histone 3 lysine 4 (H3K4) demethylase, and HAC1 for the histone acetyltransferase—resulted in altered WUS expression and developmental rates of regenerated shoots in vitro. Second, we showed that regulatory regions of WUS were developmentally regulated by both DNA methylation and histone modifications through bisulfite sequencing and chromatin immunoprecipitation. Third, DNA methylation in the regulatory regions of WUS was lost in the met1 mutant, thus leading to increased WUS expression and its localization. Fourth, we did a genome-wide transcriptional analysis and found out that some of differentially expressed genes between wild type and met1 were involved in signal transduction of the phytohormone auxin. We verified that the increased expression of AUXIN RESPONSE FACTOR3 (ARF3) in met1 indeed was due to DNA demethylation, suggesting DNA methylation regulates de novo shoot regeneration by modulating auxin signaling. We propose that DNA methylation and histone modifications regulate de novo shoot regeneration by modulating WUS expression and auxin signaling. The study demonstrates that, although molecular components involved in organogenesis are divergently evolved in plants and animals, epigenetic modifications play an evolutionarily convergent role in this process

    Satellite DNA in Paphiopedilum subgenus Parvisepalum as revealed by high-throughput sequencing and fluorescent in situ hybridization

    Get PDF
    Background: Satellite DNA is a rapidly diverging, largely repetitive DNA component of many eukaryotic genomes. Here we analyse the evolutionary dynamics of a satellite DNA repeat in the genomes of a group of Asian subtropical lady slipper orchids (Paphiopedilum subgenus Parvisepalum and representative species in the other subgenera/sections across the genus). A new satellite repeat in Paphiopedilum subgenus Parvisepalum, SatA, was identified and characterized using the RepeatExplorer pipeline in HiSeq Illumina reads from P. armeniacum (2n = 26). Reconstructed monomers were used to design a satellite-specific fluorescent in situ hybridization (FISH) probe. The data were also analysed within a phylogenetic framework built using the internal transcribed spacer (ITS) sequences of 45S nuclear ribosomal DNA. Results: SatA comprises c. 14.5% of the P. armeniacum genome and is specific to subgenus Parvisepalum. It is composed of four primary monomers that range from 230 to 359 bp and contains multiple inverted repeat regions with hairpin loop motifs. A new karyotype of P. vietnamense (2n = 28) is presented and shows that the chromosome number in subgenus Parvisepalum is not conserved at 2n = 26, as previously reported. The physical locations of SatA sequences were visualised on the chromosomes of all seven Paphiopedilum species of subgenus Parvisepalum (2n = 26–28), together with the 5S and 45S rDNA loci using FISH. The SatA repeats were predominantly localisedin the centromeric, peri-centromeric and sub-telocentric chromosome regions, but the exact distribution pattern was species-specific. Conclusions: We conclude that the newly discovered, highly abundant and rapidly evolving satellite sequence SatA is specific to Paphiopedilum subgenus Parvisepalum. SatA and rDNA chromosomal distributions are characteristic of species, and comparisons between species reveal that the distribution patterns generate a strong phylogenetic signal. We also conclude that the ancestral chromosome number of subgenus Parvisepalum and indeed of all Paphiopedilum could be either 2n = 26 or 28, if P. vietnamense is sister to all species in the subgenus as suggested by the ITS data

    From Mendel’s discovery on pea to today’s plant genetics and breeding

    Get PDF
    In 2015, we celebrated the 150th anniversary of the presentation of the seminal work of Gregor Johann Mendel. While Darwin’s theory of evolution was based on differential survival and differential reproductive success, Mendel’s theory of heredity relies on equality and stability throughout all stages of the life cycle. Darwin’s concepts were continuous variation and “soft” heredity; Mendel espoused discontinuous variation and “hard” heredity. Thus, the combination of Mendelian genetics with Darwin’s theory of natural selection was the process that resulted in the modern synthesis of evolutionary biology. Although biology, genetics, and genomics have been revolutionized in recent years, modern genetics will forever rely on simple principles founded on pea breeding using seven single gene characters. Purposeful use of mutants to study gene function is one of the essential tools of modern genetics. Today, over 100 plant species genomes have been sequenced. Mapping populations and their use in segregation of molecular markers and marker–trait association to map and isolate genes, were developed on the basis of Mendel's work. Genome-wide or genomic selection is a recent approach for the development of improved breeding lines. The analysis of complex traits has been enhanced by high-throughput phenotyping and developments in statistical and modeling methods for the analysis of phenotypic data. Introgression of novel alleles from landraces and wild relatives widens genetic diversity and improves traits; transgenic methodologies allow for the introduction of novel genes from diverse sources, and gene editing approaches offer possibilities to manipulate gene in a precise manner
    corecore