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revolutionized in recent years, modern genetics will forever 
rely on simple principles founded on pea breeding using 
seven single gene characters. Purposeful use of mutants to 
study gene function is one of the essential tools of mod-
ern genetics. Today, over 100 plant species genomes have 
been sequenced. Mapping populations and their use in seg-
regation of molecular markers and marker–trait association 
to map and isolate genes, were developed on the basis of 
Mendel’s work. Genome-wide or genomic selection is a 
recent approach for the development of improved breeding 
lines. The analysis of complex traits has been enhanced by 
high-throughput phenotyping and developments in statisti-
cal and modeling methods for the analysis of phenotypic 
data. Introgression of novel alleles from landraces and wild 
relatives widens genetic diversity and improves traits; trans-
genic methodologies allow for the introduction of novel 
genes from diverse sources, and gene editing approaches 
offer possibilities to manipulate gene in a precise manner.

Reflection on Mendel’s work on pea

In 2015, we celebrated 150 years since the presentation (8 
February and 8 March 1865) of the seminal work of Gregor 
Johann Mendel. Mendel’s 1865 work (published in Men-
del 1866) was at first largely ignored or not understood. 
As documented by Olby (1979), Mendel’s plant hybridiza-
tion research was cited 11 times over the period of 30 years 
beginning in 1865, but it was fully rediscovered and its 
essence understood in 1900, 34 years after its publication 
(Correns 1900; Tschermak 1900; de Vries 1900). From 
then on, Mendel’s work has been widely discussed and 
meticulously analyzed (Fisher 1936). Mendel’s insights 
have been thoroughly tested and became the solid basis 
of the new discipline of genetics (Weldon 1902; Bateson 
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Abstract  In 2015, we celebrated the 150th anniversary 
of the presentation of the seminal work of Gregor Johann 
Mendel. While Darwin’s theory of evolution was based 
on differential survival and differential reproductive suc-
cess, Mendel’s theory of heredity relies on equality and 
stability throughout all stages of the life cycle. Darwin’s 
concepts were continuous variation and “soft” hered-
ity; Mendel espoused discontinuous variation and “hard” 
heredity. Thus, the combination of Mendelian genetics 
with Darwin’s theory of natural selection was the process 
that resulted in the modern synthesis of evolutionary biol-
ogy. Although biology, genetics, and genomics have been 

Communicated by H. Bürstmayr and J. Vollmann.

 *	 Petr Smýkal 
	 petr.smykal@upol.cz

1	 Department of Botany, Faculty of Sciences, Palacký 
University in Olomouc, Slechtitelu 27, Olomouc, Czech 
Republic

2	 International Crops Research Institute for the Semi-Arid 
Tropics (ICRISAT), Patancheru, Hyderabad, India

3	 USDA‑ARS, Washington State University, Pullman, USA
4	 John Innes Centre, Norwich Research Park, Norwich, UK
5	 Department of Plant Developmental Genetics, Institute 

of Biophysics, Czech Academy of Sciences, Brno, Czech 
Republic

6	 Crop Development Centre, University of Saskatchewan, 
Saskatoon, SK, Canada

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ICRISAT Open Access Repository

https://core.ac.uk/display/219474613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-016-2803-2&domain=pdf


	 Theor Appl Genet

1 3

1902). Several reviews and commentaries have been pub-
lished related to Mendel’s achievements starting from the 
controversy over his data (Fairbanks and Rytting 2001; 
Hartl and Orel 1992; Daniel et  al. 2007; Franklin et  al. 
2008; Radick 2015), to references to his personality and 
work (Zirkle 1951; Gasking 1959; Orel 1984, 1996; Weil-
ing 1991; Sandler 2000; Ellis et  al. 2011; Reid and Ross 
2011; Klein and Klein 2013; Gliboff 2013). Although biol-
ogy, genetics and mainly genomics have been revolution-
ized in recent years, modern genetics will forever rely on 
principles of heredity founded on pea using seven single 
gene characters.

Mendel was not the first to choose pea as an experimen-
tal model (Smýkal 2014 and references herein); however, 
he was the first to apply calculus of ratios to a biological sit-
uation (Monaghan and Corcos 1990). In fact, it seems that 
Mendel had the theory in mind (Dunn 1965). He formu-
lated the hypothesis first and then based on the comparison 
of observed numbers and expected ratios, he tested them 
with larger sets (Fisher 1936; Klein and Klein 2013). This 
is the result of Mendel’s training as he was not just a bota-
nist and plant breeder, but also well trained in physical sci-
ences such as meteorology (Klein and Klein 2013), where 
precise records were always essential and used to predict 
future situations. One of Mendel’s innovations was to look 
at the inheritance of traits as random events and analyze the 
results based on expectations. This may have been one rea-
son why his paper was ignored. Random events, statistics 
and probabilities were more common of the language used 
by nineteenth century physicists and mathematicians than 
nineteenth century biologists (Sheynin 1980). His genius is 
that he discusses the laws of combination in relation to the 
formation of zygotes. Careful in observations, he denoted 
manifested traits as dominant, while those “hidden” as 
recessive. This classification and letter code we use still 
today. Mendel was also very lucky to have chosen unlinked 
traits/genes (Reid and Ross 2011). The single case in which 
he might have detected linkage (depending on whether he 
studied the v or p gene), and, if he did study v, which is 
linked to le, there are indications in a letter to Nägeli (Men-
del 1950) that he studied the alleles in repulsion conforma-
tion, and thus would not have been likely to detect linkage 
as readily as had the recessive alleles been in coupling con-
formation. Mendel has given new meaning to the word of 
hybrid, as not a simple mix of parents but a contribution of 
parents to their progeny.

Besides pea, Mendel tested several other plant species, 
popular among hybridist scientists at that time, namely 
Hieracium, Cirsium and Geum (Orel 2003; Nogler 2006). 
These species reflected a key question asked at that time, 
i.e., the transmission of traits after species hybridization, to 
shed light on the origin of species. There was a common 
belief in the fixity of species. It seems likely that Mendel 

himself did not ask questions on the origin of species but 
rather was looking for laws governing the inheritance of 
particular characters that did not change over time, reject-
ing the popular theory of blending of characters and spe-
cies essence. Thus, whereas Darwin held that species var-
ied over time, Mendel believed that species characteristics 
remained constant (Wynn 2007). At that time, the existence 
of constant hybrids was of great interest, as these hybrids 
attain the status of new species (Mendel 1866; Bishop 
1986). However, as pea experimental material did not ful-
fil the species criteria considered necessary by theoretical 
biologists of the time (Gasking 1959), Mendel tested 26 dif-
ferent genera over the years (Mendel 1870, 1950, letters to 
Nägeli in Orel 2003). Some of his results agreed with those 
he obtained with pea, some however, did not, in particular 
with different colored beans where he found a great range 
of colors in hybrids as a result of quantitative inheritance 
and, with Hieracium, where hybrids remained constant as a 
consequence of apomixis. He suggested first that the com-
mon bean phenomenon might be explicable if flower colors 
were determined not by one, but by two or more pairs of 
factors. Actually, Mendel discussed the matter of quantita-
tive traits especially with respect to the pea attribute tall/
dwarf, which actually was “length of stem”. Luckily, Men-
del stayed with pea, as with Hieracium he would not have 
been able to make any plausible explanation at that time, 
due to the existence of apomixis, while several traits eas-
ily observable in common bean are encoded by quantitative 
trait loci as we know today.

Until now, we have molecular evidence for four out of 
seven (possibly eight, which includes purple pods, not used 
in Mendel’s thesis) traits he used (Hellens et al. 2010; Ellis 
et al. 2011; Reid and Ross 2011; Smýkal 2014). However, 
for some of the characters (as Mendel called them “ele-
ments”) we are unsure which loci were responsible. More-
over, there will likely forever remain uncertainty over the 
mutations he used. One of the most impressive aspects of 
Mendel’s thinking lies in the notation that he developed 
to represent his data: a capital and a lowercase letter (Aa) 
for the hybrid genotype actually represented what we now 
know as the two alleles of one gene. Mendel deliberately 
chose specific characters. He wanted to demonstrate sta-
sis, formulate a theory, and then extrapolate to all other 
modes of inheritance. Mendel did not deliberately use plant 
mutants, although some of the alleles he used in pea are 
considered as mutants today (Bhattacharyya et  al. 1990, 
Hellens et  al. 2010). The purposeful use of mutants to 
study gene function is one of the essential tools of modern 
genetics. This is expected to proliferate even more in the 
near future, as we understand more the process of directed 
mutagenesis (Osakabe and Osakabe 2015).

Since the nineteenth and twentieth centuries, when tradi-
tional plant science was subdivided into discrete, classical 
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disciplines, including anatomy, morphology, physiology, 
biochemistry and genetics, our knowledge has expanded 
greatly. In addition to the emergence of new research fields 
and disciplines, including genomics and bioinformatics, we 
are now combining distant disciplines to uncover complex 
biological situations. Fundamental plant science is increas-
ingly becoming a collaborative domain, with research pro-
jects including aspects of physics, mathematics and chem-
istry. This is largely fueled by the last decade’s technical 
advances, allowing for more discoveries, but also creating 
new challenges, such as data storage, analysis and predic-
tions. Interdisciplinary collaborations are often the solu-
tion to these challenges. This led to the establishment of 
systems biology, as an integrative approach to understand 
complex networks that characterize the phenotypes in the 
cell. When molecular biology emerged, plants were not the 
organism of choice for experimentation. As a genetic model 
for plants, pea was gradually superseded by other species, 
such as Nicotiana tabacum and Antirrhinum majus, but it is 
Arabidopsis thaliana that became the prominent model and 
which has a smaller physical size, much smaller genome 
and a shorter reproductive cycle (Meyerowitz 2001; Somer-
ville and Koornneef 2002; Koornneef and Meinke 2010). 
The values of mutant analysis and genetic transformation 
for plant physiology and biochemistry were demonstrated 
using A. thaliana. Ten years after the publication of the 
Arabidopsis genome sequence, it remains the standard ref-
erence for plant biology (Koornneef and Meinke 2010). 
Today, we do not need to rely only on such simplified 
models, but can also use more complex crop species (such 
as maize, rice or soybean and common bean in the case 
of grain legumes), as well as long-lived trees (poplar) to 
understand different evolutionary and life strategies.

Mendelizing continuous variation: quantitative 
trait loci

Immediately after the rediscovery of Mendel’s laws, biolo-
gists addressed the issue of continuous variation. Castle 
(1903) remarked “Bateson makes the pregnant suggestion 
that even cases of continuous variation may possibly prove 
conformable with Mendelian principles” and gave the 
example of intermediate height of pea from a short ×  tall 
cross. East (1916) discussed the “general proof of the 
cumulation effect of genes” found in maize (Hayes and 
East 1915) and “most Mendelizing characters have been 
shown to be due to several traceable factors.” East (1916) 
presented quantitative data analysis on corolla length in 
Nicotiana as evidence, and then summarized the addi-
tional evidence of the authors of numerous studies (citing 
Belling, Castle, Davenport, East, Emerson, Hayes, Heri-
bert-Nilsson, Kajanus, MacDowell, Nilsson-Ehle, Pearl, 

Phillips, Punnett, Shull, Tammes and Tschermak) in sup-
port of “plural segregating factors.” East and others noted 
the effect of environment on quantitative trait expression 
and further proposed eight requirements to test the multi-
ple factor hypothesis. Sax (1923) tested the hypothesis on 
seed size and seed coat color in common bean and used 
Castle’s (1921) data to estimate the number of factors. 
He stated that “various assumptions necessary in estimat-
ing the number of size factors, based on F2 distribution, 
make the results obtained of little value”, as also pointed 
out by Shull (1921). Sax proposed an elegant explanation 
for bean seed size and coloration segregation ratios by link-
age, i.e., genetic factors on the same or different linkage 
groups and significantly suggested that “the size factors in 
different chromosomes may not be equal in their effect.” 
Indeed, earlier, Shull (1921) discussed that all factors are 
not necessarily additive, or equal in effect, while some 
factors act in a negative direction and some in a positive 
direction. Linked and unlinked were common terms used 
in the literature since Sturtevant in 1913 (Frost 1921), but 
Sax (1923) is credited with the first report of quantitative 
trait linkage using a marker (seed coat pigmentation) to 
classify chromosomes and detect linkage between major 
genes and quantitative genes (seed size) in common bean. 
Detection of genes controlling quantitative traits using 
segregating marker genes and analyzing quantitative vari-
ation took a significant step forward with Thoday’s publi-
cation in 1961. Thoday challenged the assumption that the 
determination of quantitative inheritance for a trait is the 
end point and presented the basic thesis of using markers 
in segregating populations to detect genes controlling quan-
titative traits. Already, breeders had found positive mor-
phological marker–quantitative trait associations (Everson 
and Schaller 1955). Thoday (1961) suggested that with the 
first demonstrated quantitative variation (biometrical genet-
ics) by Johannsen (in German, 1909) by progeny testing, 
and with Sax’s 1923 experiments, the theoretical ground-
work for mapping quantitative trait loci was complete 
and was an apparent next research objective for quantita-
tive geneticists. Understatedly, he noted the main limita-
tion as being the availability of markers for the detection 
of the polygenes. The term quantitative trait locus and the 
abbreviation (QTL) first appeared in the literature in 1975 
by Geldermann studying animal genetics, who also noted 
the paucity of available markers and added the importance 
of precise phenotypes for QTL detection. The deployment 
of co-dominant isozyme markers (Rick and Fobes 1975) 
in the 1980s improved the detection of possible QTL by 
increasing the coverage of the genome, while avoiding the 
dominant/recessive effects of morphological markers but 
with still too few markers to detect epistasis (Tanksley et al. 
1982; Stuber et al. 1982; Edwards et al. 1987). The advent 
of recombinant DNA techniques ushered in true genetic 
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maps in humans of “DNA marker loci”, based initially on 
restriction fragment length polymorphisms (RFLPs), also 
as co-dominant markers but much more plentiful than ear-
lier ones (Botstein et al. 1980). Such maps were found to 
have broad applications in plant and animal improvement 
programs for marker-assisted introgressions, especially 
of QTLs (Beckmann and Soller 1983). The next land-
mark came with the publication of “Mapping Mendelian 
factors underlying quantitative traits using RFLP link-
age maps” with the improvement of QTL detection using 
interval mapping and LOD score analysis providing the 
genetic location and phenotypic effect of the QTL (Lander 
and Botstein 1989), along with the companion publica-
tion (Paterson et  al. 1988). RFLPs allowed for the scan-
ning of all the chromosomes (70 markers, 14.3  cM aver-
age spacing in the case of tomato) and launched waves of 
QTL mapping in plants and animals for a wide range of 
phenotypic traits. Advances in DNA sequencing technolo-
gies (Sanger and Coulson 1975) and the breakthrough of 
the polymerase chain reaction (PCR) (Mullis et  al. 1986) 
steadily increased the DNA marker density of maps, allow-
ing for fine mapping QTL, both innovations resulting in 
Nobel prizes in chemistry. These discoveries allowed for 
the eventual cloning of the first causative gene underlying 
a QTL, fruit size in tomato (Frary et al. 2000), completing 
the assertion of Bateson that a quantitative trait could be 
converted to single Mendelian factors. The limitations of 
many linkage-based QTL studies still included the paucity 
of high-density genetic maps and the limits of biparental 
or pedigree-based mapping populations, with resolution 
to large genetic regions rather than gene(s) due to insuf-
ficient recombination events. A new technique was pro-
posed for mapping complex trait loci, named association 
mapping, based on using collections of genotypes to cap-
ture historic meiotic events (Risch and Merikangas 1996). 
However, it took a breakthrough in statistical genetics to 
reduce the rate of false positives in association mapping 
studies with Bayesian-based statistics to identify previ-
ously cryptic underlying population structure of the assem-
bled genotypes (Pritchard and Rosenberg 1999; Pritchard 
et al. 2000). Immediately, Thornsberry et al. (2001) applied 
this approach to flowering time in maize and identified a 
deletion in the Dwarf8 gene as the causal allele. Risch and 
Merikangas (1996) also noted that the limitations for asso-
ciation studies were the paucity of polymorphisms across 
the human genome. However, this limitation was solved 
with the advent of sequencing of whole genomes, notably 
the first plant species Arabidopsis thaliana (The Arabidop-
sis Genome Project 2000). Application of these advances 
in agricultural crops has been complicated by problems 
caused by low predictive power in current models and of 
resource allocation between phenotyping and genotyp-
ing (Heslot et  al. 2015). New models under development 

are expected to improve prediction. Today, over 100 plant 
species’ genomes have been sequenced (Michael and 
VanBuren 2015), assisted by the implementation of next-
generation sequencing (NGS) technologies and reduced 
costs (Balasubramanian et  al. 2004; Bentley et  al. 2008). 
The advent of widespread whole-genome sequencing has 
opened a new era of Mendelizing QTL, where a paucity 
of genetic markers is no longer an issue (Hori et al. 2016). 
However, new challenges are now revealed. In a recent 
review of maize genetics summarizing progress with iden-
tifying candidate genes, it was stated that most quantitative 
traits are controlled by a large number of small effect genes 
“locked away in low-recombination regions”, presenting 
challenges in (even) sequenced and highly genotyped asso-
ciation mapping panels (Wallace et al. 2014).

The advent of plant genomics

Beginning in the early twentieth century, advances in 
microscopy, chromosome banding, DNA labeling, in  situ 
hybridization, flow cytometry, micromanipulation and 
chromosome-imaging systems transformed classical 
cytogenetics, paving the way for present-day molecular 
cytogenetics. Cytogenetics contributed to the early stages 
of genome mapping projects in diverse organisms, first 
by mapping specific repetitive DNA, and later by map-
ping entire genes using fluorescence in  situ hybridization 
(FISH), or by distinguishing between parental genomes 
in hybrids using genomic in  situ hybridization (GISH) 
(Kato et  al. 2005). Further development of cytogenetic 
approaches has led to chromosome painting in plants 
(Lysak et  al. 2001). Identification of chromosome territo-
ries occupied by specific chromosomes within interphase 
nuclei using in vivo fluorescent labeling systems, in combi-
nation with other methods (e.g., fluorescence recovery after 
photobleaching, FRAP), have increased our understanding 
of chromatin dynamics. These methods, which allow for 
the examination of sequence localization in 3D nuclei, will 
be soon applied to plant genomes, much as analyses of 4D 
chromosome dynamics in cycling cells were used in mam-
mals (Strickfaden et al. 2011).

Similarly, genetic mapping using molecular methods, 
either RFLP based or later PCR based, led to the advent 
of comparative genetics. The RFLP technique was first 
applied to plants in the mid-1980s with the aim of pro-
ducing a new generation of markers for breeders. This 
method resulted in reports of synteny across genomes, for 
example, between tomato and potato (Bonierbale et  al. 
1988). It was not clear at that time that intergenomic syn-
teny holds mostly to genes. Alternative marker systems 
based on PCR have complemented RFLP since the 1990s. 
The first consensus grass map, which aligned the genomes 
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of seven grass species, revealed extensive conservation 
of gene order, despite many differences in organization 
among the genomes observed (Moore et  al. 1995; Gale 
and Devos 1998). A multi-species approach allowed plant 
genomics to evolve into a powerful and routine tool, espe-
cially when plant genomes first began to be studied within 
genome sequencing projects. A. thaliana was the first com-
pletely sequenced plant species. Rice became the second 
sequenced plant, not only because of its economic impor-
tance, but also due to its small genome, reasonable transfor-
mation competence and a detailed genetic map. The list of 
sequenced plant species grew quickly thereafter (Michael 
and Jackson 2013). Genomes of model species share rea-
sonable genetic synteny with key crop plants, which facili-
tates the discovery of genes and the association of genes 
with phenotypes. During the last decade, large genomic 
centers have generated massive data sets beneficial for 
plant biologists. The current decade will bring essentially 
completed sequences for multiple branches of virtually all 
angiosperm clades that include major crop and botanical 
models (Paterson et al. 2010). The acceleration of genome 
projects was made possible by the invention and wide-
spread use of next-generation sequencing. “Progress in sci-
ence depends on new techniques, new discoveries, and new 
ideas, probably in that order,” said Sydney Brenner in 2002. 
The first DNA sequencing techniques were developed in the 
1970s by Sanger and colleagues (Sanger et al. 1977) and by 
Maxam and Gilbert (1977). Sanger sequencing (considered 
first-generation sequencing) became the prevailing DNA 
sequencing method for the next 30 years and enabled sci-
entists to complete the genomes of Arabidopsis, rice and 
many other plant species. The emergence of NGS in 2005, 
first developed by 454 Life Sciences (now Roche), entails 
massive parallel sequencing (based on an older pyrose-
quencing method, Ronaghi et al. 1996) and was a great leap 
forward toward faster, high-throughput and cheaper DNA 
sequencing. NGS techniques now include several different 
platforms (454, Illumina, SOLiD, Ion Torrent, PacBio and 
others; for review see van Dijk et al. 2014) and allow sci-
entists to get billions of sequencing reads corresponding to 
terabases (Tb) per run. The application of NGS in plant sci-
ence not only made feasible the whole-genome assembly of 
many species but also facilitated other studies—e.g., gene 
expression, DNA–protein interactions, the relationship 
between genomic variation and phenotype—that covered 
a wide range of related disciplines from molecular biology 
via developmental biology to agrigenomics (Varshney et al. 
2009). The recent advent of a third-generation technology, 
represented by nanopore sequencing (Oxford Nanopore 
Technologies), allows for single-molecule sequencing with-
out the need for library preparation or sequencing reagents. 
Such technology has established single-cell genomics that 

has recently been utilized in animals, and its application in 
plants is only a question of time (Thudi et al. 2012).

Genomes: from C values to whole‑genome structure 
and evolution

The amount of DNA in plant nuclei was estimated for the 
first time 66 years ago, when the genetic role of DNA was 
already known but before the double helix structure of 
DNA was discovered in 1953. The haploid nuclear com-
plement was defined as the 1C value (Swift 1950). The C 
values estimated in 2802 plant species (representing 1  % 
of all angiosperm species and about 30  % of angiosperm 
families) were obtained by 1997, and the C values of 
approximately 1700 other species were estimated by 2003 
(Bennet and Leitch 2005). Several methods have been used 
to measure plant DNA C values, including Feulgen micro-
densitometry, flow cytometry or computer-based image 
analysis (Greilhuber 2008). Since plant C values were first 
estimated, it has become evident that there is no correlation 
between the complexity of an organism and the size of its 
genome. Closely related species often differ significantly in 
their nuclear content. These enigmatic differences have led 
to the term “C value paradox”. Originally, when the mosaic 
structure of genes was discovered, differences in genome 
size were attributed to the introns. Later, when genomes 
were studied in more detail, it became clear that repetitive 
DNA sequences, in combination with polyploidization, 
provide the main keys to resolving the “C value paradox”. 
Genome sizes vary by >2000-fold among the angiosperms, 
from fewer than 107 base pairs (1C = 0.065 pg–63.4 Mbp) 
in Genlisea margaretae, Lentibulariaceae (Greilhuber et al. 
2006), to more than 1011 (1C =  152.23  pg–150  Gbp) in 
Paris japonica, Melanthiaceae (Pellicer et al. 2010).

Genomes evolve by duplication of genes, chromosome 
or whole genomes, by various rearrangements, insertions of 
organellar, bacterial or viral DNA that are part of horizon-
tal gene transfer (HGT), (micro)satellite expansions, trans-
posable element insertions and other processes. Although 
the first comparative studies suggested that plants have a 
“one-way ticket to genomic obesity” (Bennetzen and Kel-
log 1997), later phylogenetic evidence showed that the 
processes leading to the elimination of DNA, which often 
involve repetitive elements, are also present and result in 
genome downsizing (Petrov 2001; Petrov et al. 2003).

Genome sequencing projects led to the discovery of 
the genome structure of many plants. A major part of the 
nuclear genome of most plants is represented by different 
repetitive DNA elements (Kubis et al. 1998); these elements 
contribute to the higher evolutionary dynamics of genomes, 
while genes represent slowly evolving (conservative) 
genetic units. A high turnover of repetitive DNA (compared 
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to genes) results in a fast divergence of these genome com-
ponents and leads, e.g., to an infeasibility of GISH map-
ping when more distantly related species are studied (Lim 
et al. 2007; Koukalova et al. 2010), as well as causing prob-
lems with chromosome painting in plants (Schubert et  al. 
2001). Perhaps, the most distinctive feature of angiosperm 
genomes is the large amount of genome duplication, i.e., 
polyploidization. It has long been suspected that many 
angiosperms were paleopolyploids (Stebbins 1966), but 
recent analyses of genome sequences suggest that virtually 
all angiosperms are paleopolyploids (Bowers et  al. 2003; 
Paterson et al. 2004). According to a speculative hypothesis 
(Chapman et  al. 2006), genome duplications are not epi-
sodic but rather cyclic, providing various fitness advantages 
that erode over time, which favors new polyploidizations. 
Higher repetitive DNA turnover, repeated polyploidizations 
and subsequent gene losses lead to much more rapid struc-
tural changes of plant genomes when compared with verte-
brates, where gene order conservation is evident even after 
hundreds of millions of years of divergence (Kejnovsky 
et al. 2009).

Repetitive DNA: from junk DNA to a major 
evolutionary force

Repetitive DNA elements can be divided into two major 
groups, distinguished by their genomic organization: trans-
posable elements (TEs) that are dispersed throughout a 
genome and satellites arranged in tandem (Schmidt and 
Heslop-Harrison 1998). Intermediate forms can also exist, 
e.g., TEs can contribute to the origin and/or amplification 
of satellite DNA. Satellite DNA, whose name was inspired 
by the “satellite” band produced during density gradient 
centrifugation, is subdivided according to monomer length 
into microsatellites, minisatellites and satellites. Satellites 
often constitute long arrays in genomes and could be a sub-
ject to concerted evolution (Elder and Turner 1995). Copy 
numbers of individual repetitive DNA motifs can vary from 
several hundreds to hundreds of thousands, and the tandem 
arrangement of their multiple copies have not only non-
genic sequences, but also ribosomal genes. The balance 
between homogenization and mutations results in a specific 
range of satellite variability. Microsatellites go through the 
phases of birth, expansion and regression (Ellegren 2004; 
Kelkar et al. 2011). The discovery of transposable elements 
by Barbara McClintock (1950) represented a major mile-
stone in genetics, but the greatest importance of her discov-
ery was, much as in the case of Mendel, recognized several 
decades later when McClintock was awarded the Nobel 
Prize in 1983. The recessive allele locus rugosus, the cause 
of one of the traits (wrinkled seeds) studied by Mendel, is 
caused by a DNA transposon insertion into a gene encod-
ing a starch-branching enzyme (Bhattacharyya et al. 1990). 

Transposable elements are ubiquitous mobile genetic ele-
ments spread through genomes either by a copy and paste 
mechanism via an RNA intermediate, used by retrotranspo-
sons, or by a cut and paste mode used by DNA transposons. 
These two main classes of TEs are further subdivided into 
several orders and many families and subfamilies (Wicker 
et al. 2007). TEs can together constitute up to 80 % of an 
individual genome, and a single TE family may represent 
up to 38 % of a whole genome (Neumann et al. 2006). The 
function of repetitive DNA has not been completely elu-
cidated, despite the many debates ongoing since the dis-
covery of repetitive DNA. Repetitive DNA was originally 
considered to be “junk DNA” (Doolittle and Sapienza 
1980; Orgel and Crick 1980), but the last decades have 
shown that it represents an important evolutionary force 
and may even function as a driver and facilitator of evo-
lution. Repetitive DNA, especially transposable elements, 
can affect genome diversity and plasticity, induce epige-
netic changes, influence gene expression or build cellular 
regulatory networks (Kazazian 2004; Oliver and Green 
2009; Biémont and Vieira 2006; Feschotte 2008). Differ-
ences in repetitive DNA are the major factors responsible 
for genome size variation, not only between species, but 
also within a species. Some TEs are used for important cel-
lular functions in a process called domestication or exapta-
tion (Volff 2006; Kokosar and Kordis 2013). For example, 
an integral part of the immune systems of vertebrates, V(D)
J recombination, evolved from Transib DNA transposons 
(Kapitonov and Jurka 2005). Similarly, telomeres of Dros-
ophila melanogaster are formed by HeT-A and TART retro-
transposons (Abad et al. 2004; Biessmann et al. 1992), and 
the centromere-binding protein CENP-B evolved from the 
transposase of DNA transposons (Kipling and Warburton 
1997). Present genomics views genomes as ecosystems of 
various elements (genes, various repeats) interconnected by 
a plethora of interactions, from symbiosis via competition 
to parasitism. The character of these relationships between 
elements can change over time, and originally parasitic ele-
ments can evolve into cellular functions, simply increase 
individual variability or induce genome reshuffling, thereby 
increasing the evolutionary potential of a species.

Impact of Mendelian genetics on plant breeding 
and food security

From the dawn of agriculture until today, farmers have 
acted as plant breeders, working almost exclusively through 
mass selection, that is, by ensuring that some individual 
plants made a proportionately greater genetic contribution 
to the following generation than did others. Natural out-
crossing was frequent enough, even in self-pollinating spe-
cies, to generate useful genetic recombinants. Early plant 
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breeders worked without the benefits of progeny testing or 
replication, both of which can enhance gain from selection, 
but they had two other important factors working in their 
favor: time and ecosystems.

In the twentieth century, many plant breeding techniques 
were developed on the basis of Mendelian principles of 
inheritance (Kingsbury 2009). These include pedigree, 
mass selection, and backcrossing approaches. Mutagenesis 
techniques have allowed for the identification of many use-
ful new variants. In some crops hybrid approaches are prac-
tical and allow for the exploitation of heterosis to achieve 
substantial gains in crop yield (Bernardo, this issue). Inter-
specific hybridization methods are being used to introgress 
alleles for important traits such as disease resistance and to 
broaden genetic diversity in crops.

Rate of gain in plant breeding has also been enhanced 
in the past century by several improvements in methodol-
ogy. Contra-season nurseries allow for the production of 
more than one generation in a year. Well-managed glass-
house and phytotron chambers also allow for off-season 
advances. Improved small plot machinery has given rise 
to major increases in the scale of breeding programs. 
Improved agronomic practices for disease, weed, and insect 
control have increased productivity in breeding. Improved 
sample handling techniques such as bar-coding allow for 
major improvements in the efficiency of plant breeding. 
Improved experimental designs and statistical packages 
have improved the efficiency of selection and made best 
use of limited resources.

Until the nineteenth century, crop improvement and its 
production were mainly in the hands of farmers and gener-
ally based upon the expansion of the cultivated area to pro-
duce the required food grains. The understanding of crop 
improvement science based on Mendel’s genetic principles 
laid a firm foundation to science-based agriculture. Under-
standing of trait genetics in the light of Mendel’s princi-
ples of heredity, Norman Borlaug led the development 
of high-yielding semi-dwarf varieties of rice and wheat, 
which revolutionized wheat and rice production in Asia 
in the mid-1960s. This breakthrough came to be known as 
the Green Revolution and symbolized the process of using 
agricultural science to develop modern techniques for the 
benefit of developing countries. More precisely, these vari-
eties transferred many nations such as India, Pakistan, and 
the Philippines from “mouth-to-ship” situation. Presently, 
science-based crop improvement, which owes its founda-
tion to Mendelian principles, contributes 2784 million tons 
(FAO 2015) of cereal grains to the world food basket to 
nourish the planet.

Methods of crop breeding have undergone major 
changes, and a range of technologies is improving the 
rate and success of crop improvement in some breeding 

programs, but these are yet to be widely adopted. Contribu-
tions are being made through new selection strategies that 
are informed by sophisticated genetics, the use of comput-
ers to track and manage field trials, and biometric meth-
ods for field trial design and assessment of interactions 
between genotype, environment, and management. Hetero-
sis (hybrid vigor) for inbreeding species can offer 20–50 % 
yield increases. Strategies for using heterosis more widely 
to increase yields in inbreeding crops center on finding 
ways of reducing the cost and increasing the efficiency of 
producing hybrid seed (Kingsbury 2009). These include 
identifying new sources of male sterility for hybrid creation 
and using transgenic approaches to engineer sterility and 
restore fertility. Another potential future mechanism for 
producing hybrid seeds involves the use of apomixis, where 
plants produce seeds without the need for fertilization.

Mendel’s principles in the era of genomics

Present-day genomics research has developed on three 
milestone discoveries of biology, namely, Mendelian prin-
ciples of heredity, evolutionary principles of Darwin, and 
the discovery of the DNA structure. Mapping populations, 
their use in segregation of molecular markers and marker–
trait association to map and isolate genes, were developed 
on the basis of Mendelism. With the advent of NGS-based 
technologies and the rapid decline in per sample cost, 
many sequencing-based approaches have been proposed. 
SHOREmap (Schneeberger et  al. 2009), next-generation 
mapping (NGM) (Austin et al. 2011), MutMap (Abe et al. 
2012), isogenic mapping by sequencing (Hartwig et  al. 
2012), SNP-ratio mapping (SRM) (Lindner et  al. 2012), 
MutMap+ (Fekih et al. 2013), MutMap-Gap (Takagi et al. 
2013), and Seq-BSA (Singh et al. 2015a, b) are some of the 
important approaches for trait mapping. These approaches 
are not only fast and reliable, but more cost-effective in 
comparison to the conventional approach of trait mapping 
and deployment.

In addition to classical and modern plant breeding, Men-
del’s work laid the foundation for today’s molecular breed-
ing and genetic engineering. Mendel’s laws were helpful 
for selection of stable and promising plants/events based on 
segregation ratios. Globally, using Mendelian genetics in 
terms of foreground selection (selection of plants possess-
ing allele(s) of interest in the segregating generation though 
linked markers), with and without background selection 
(selection of plants with a higher proportion of the recur-
rent parent genome using genome-wide markers), many 
cultivars have been developed using molecular breeding 
(especially, through marker-assisted backcross breeding) 
approaches. This approach is useful for precise and rapid 
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development of improved breeding lines for the target traits 
such as disease resistance, nutritional quality, drought tol-
erance and submergence tolerance across different crops.

Although markers can be used at any stage during a 
typical plant breeding program, marker-assisted selection 
(MAS) is a great advantage in early generations, because 
plants with undesirable gene combinations can be elimi-
nated. This allows breeders to focus attention on a lesser 
number of high-priority lines in subsequent, more expen-
sive, field generations. Although DNA markers were first 
developed in the 1980s, more user-friendly PCR-based 
markers such as SSRs were not developed until the mid- to 
late 1990s, and SNPs in the past decade. The cost of using 
MAS compared with conventional phenotypic selection 
may vary considerably.

Genome-wide or genomic selection (GS) is a recent 
approach for the development of improved breeding lines 
(Meuwissen et  al. 2001). GS also relies on MAS and is 
under evaluation for the feasibility of incorporating desir-
able alleles at many loci that have small genetic effects 
when used individually. In this approach, breeding values 
can be predicted for individual lines in a “training popu-
lation” based on phenotyping and whole-genome marker 
genotyping. These values can then be applied to progeny in 
a breeding population based on marker data only, without 
the need for phenotypic evaluation. Successful examples of 
the application of GS have been reported in several crops 
(Heffner et al. 2011; Asoro et al. 2011; Lorenz et al. 2012; 
Crossa et al. 2014; Spindel et al. 2015). Complex trait dis-
section using high-throughput technologies have recently 
been developed to determine the phenotypic components 
of complex traits, for example, robotic greenhouse sys-
tems with nondestructive imaging to monitor growth rates. 
These phenomic techniques yielding precise digital data in 
combination with the recent throughput and cost-efficiency 
in genomics techniques offer the prospect of powerful asso-
ciative analysis being established to link genotype to phe-
notype. Increasing genetic diversity requires an expansion 
of the germplasm base in breeding programs, but this is 
dependent on enhancing techniques for assessing the value 
and use of individual accessions from germplasm collec-
tions. Improvements in phenotyping and genotyping will 
help remove this limitation by facilitating the identification 
and characterization of key adaptive QTLs. Introgression of 
novel alleles from landraces and wild relatives is often slow 
and tedious, but options are now being developed for accel-
erating introgression using molecular approaches (Zamir 
2001). The wider deployment of genetically modified (GM) 
approaches will be needed for the introduction of novel 
genes and alleles from diverse sources, and particularly for 
traits that are absent in plant genomes (for example, Bacil-
lus thuringiensis toxin from soil bacteria), or where there 
is insufficient variation for practical utility (for example, 

vitamin A accumulation in rice endosperm) (Tester and 
Langridge 2010). The slow advances in GM crops besides 
political decisions can be attributed to the “inefficiencies 
of conventional random mutagenesis and transgenesis” 
(Shukla et al. 2009) and the lack of target genes of impor-
tance to crop production hampered by these inefficien-
cies (Townsend et al. 2009). Early success in more precise 
gene editing in plants was reported by Shukla et al. (2009) 
in maize and by Townsend et  al. (2009) in tobacco using 
engineered Zn finger nucleases (ZNFs). The resulting effi-
ciencies demonstrated in engineering herbicide resistance 
in tobacco and maize represent a huge step forward fol-
lowed by Li et al. (2012) using transcription activator-like 
effector nucleases (TALEN)-based gene editing to produce 
disease resistance in rice. The breakthrough of the decade 
was publication of gene editing with the clustered regularly 
interspaced short palindromic repeats (CRISPR)/CRISPR-
associated (Cas) system for RNA-programmable genome 
editing (Jinek et al. 2012) followed quickly by multiplexed 
genome engineering using the CRISPR/Cas system (Cong 
et al. 2013). The first CRISPR/Cas system gene editing was 
demonstrated in model plants (Arabidopsis and tobacco) by 
Li et al. (2013). While not a panacea (Fu et al. 2013), this 
is an important progress in precision gene editing. Details 
of the three gene editing systems are presented in a review 
article by Gaj et al. (2013).

Conclusions

Despite tremendous progress made over the past 150 years, 
genetics will forever rely on basic principles discovered 
and formulated by G.J. Mendel in 1865 on garden pea. As 
a genetical model for plants, pea was gradually superseded 
by Arabidopsis thaliana. Today, however, we do not need 
to rely only on such simplified models, but we can use 
more complex crop species with often large genomes. Men-
del’s experiments were based on qualitative traits; however 
with the use of statistical analysis the issue of continuous 
variation, quantitative variation, was made accessible. QTL 
provide another demonstration that quantitative traits are 
governed by the same principles as single qualitative genes. 
During the last 150 year period, key discoveries of heredi-
tary principles were made, among others the relationship 
between genes and proteins, the double helical structure of 
the DNA molecule and, based on these, currently flourish-
ing disciplines of molecular biology and genomics. Today, 
over 100 plant species’ genomes have been sequenced, 
assisted by the implementation of NGS technologies. There 
is an emergence of new research fields and disciplines, 
including genomics and bioinformatics, and we are now 
combining distant disciplines to uncover complex biologi-
cal situations. In addition to classical and modern plant 
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breeding, Mendel’s work laid the foundation for today’s 
molecular breeding and genetic engineering. This is largely 
fueled by the last decade’s technical advances, allowing for 
more discoveries but also creating new challenges, such 
as data storage, analysis and prediction. Genetics has had 
a tremendous impact on agriculture through crop breeding 
and similarly genomic knowledge is gradually being trans-
lated to molecular breeding and genome-wide or genomic 
selection for the development of improved breeding lines.
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