69 research outputs found
Marginally low mass ratio close binary system V1191 Cyg
In this study, we present photometric and spectroscopic variations of the
extremely small mass ratio () late-type contact binary system
\astrobj{V1191 Cyg}. The parameters for the hot and cooler companions have been
determined as = 0.13 (1) , = 1.29 (8)
, = 0.52 (15) , = 1.31 (18)
, = 0.46 (25) , = 2.71 (80)
, the separation of the components is = 2.20(8) and
the distance of the system is estimated as 278(31) pc. Analyses of the times of
minima indicates a period increase of
days/yr that reveals a very high mass transfer rate of
/yr from the less massive
component to the more massive one. New observations show that the depths of the
minima of the light curve have been interchanged.Comment: Accepted for publication in New Astronomy, 16 pages, 2 figures, 4
table
Close Binary System GO Cyg
In this study, we present long term photometric variations of the close
binary system \astrobj{GO Cyg}. Modelling of the system shows that the primary
is filling Roche lobe and the secondary of the system is almost filling its
Roche lobe. The physical parameters of the system are , , , , , , and . Our results show that \astrobj{GO
Cyg} is the most massive system near contact binary (NCB). Analysis of times of
the minima shows a sinusoidal variation with a period of years due
to a third body whose mass is less than 2.3. Finally a period
variation rate of d/yr has been determined using all
available light curves.Comment: Accepted for publication in New Astronomy, 18 pages, 4 figures, 7
table
EPIC 220204960: A Quadruple Star System Containing Two Strongly Interacting Eclipsing Binaries
We present a strongly interacting quadruple system associated with the K2
target EPIC 220204960. The K2 target itself is a Kp = 12.7 magnitude star at
Teff ~ 6100 K which we designate as "B-N" (blue northerly image). The host of
the quadruple system, however, is a Kp = 17 magnitude star with a composite
M-star spectrum, which we designate as "R-S" (red southerly image). With a 3.2"
separation and similar radial velocities and photometric distances, 'B-N' is
likely physically associated with 'R-S', making this a quintuple system, but
that is incidental to our main claim of a strongly interacting quadruple system
in 'R-S'. The two binaries in 'R-S' have orbital periods of 13.27 d and 14.41
d, respectively, and each has an inclination angle of >89 degrees. From our
analysis of radial velocity measurements, and of the photometric lightcurve, we
conclude that all four stars are very similar with masses close to 0.4 Msun.
Both of the binaries exhibit significant ETVs where those of the primary and
secondary eclipses 'diverge' by 0.05 days over the course of the 80-day
observations. Via a systematic set of numerical simulations of quadruple
systems consisting of two interacting binaries, we conclude that the outer
orbital period is very likely to be between 300 and 500 days. If sufficient
time is devoted to RV studies of this faint target, the outer orbit should be
measurable within a year.Comment: 20 pages, 18 figures, 7 tables; accepted for publication in MNRA
Close binary stars in the solar-age Galactic open cluster M67
We present multi-colour time-series CCD photometry of the solar-age galactic
open cluster M67 (NGC 2682). About 3600 frames spread over 28 nights were
obtained with the 1.5 m Russian-Turkish and 1.2 m Mercator telescopes.
High-precision observations of the close binary stars AH Cnc, EV Cnc, ES Cnc,
the Scuti type systems EX Cnc and EW Cnc, and some long-period
variables belonging to M67 are presented. Three full multi-colour light curves
of the overcontact binary AH Cnc were obtained during three observing seasons.
Likewise we gathered three light curves of EV Cnc, an EB-type binary, and two
light curves of ES Cnc, a blue straggler binary. Parts of the light change of
long-term variables S1024, S1040, S1045, S1063, S1242, and S1264 are obtained.
Period variation analysis of AH Cnc, EV Cnc, and ES Cnc were done using all
times of mid-eclipse available in the literature and those obtained in this
study. In addition, we analyzed multi-colour light curves of the close binaries
and also determined new frequencies for the Scuti systems. The
physical parameters of the close binary stars were determined with simultaneous
solutions of multi-colour light and radial velocity curves. Finally we
determined the distance of M67 as 857(33) pc via binary star parameters, which
is consistent with an independent method from earlier studies.Comment: 12 pages, 9 Figures, 13 Table
Three ways to solve the orbit of KIC11558725: a 10 day beaming sdB+WD binary with a pulsating subdwarf
The recently discovered subdwarf B (sdB) pulsator KIC11558725 features a rich
g-mode frequency spectrum, with a few low-amplitude p-modes at short periods,
and is a promising target for a seismic study aiming to constrain the internal
structure of this star, and of sdB stars in general.
We have obtained ground-based spectroscopic Balmer-line radial-velocity
measurements of KIC11558725, spanning the 2010 and 2011 observing seasons. From
these data we have discovered that KIC11558725 is a binary with period P=10.05
d, and that the radial-velocity amplitude of the sdB star is 58 km/s.
Consequently the companion of the sdB star has a minimum mass of 0.63 M\odot,
and is therefore most likely an unseen white dwarf.
We analyse the near-continuous 2010-2011 Kepler light curve to reveal orbital
Doppler-beaming light variations at the 238 ppm level, which is consistent with
the observed spectroscopic orbital radial-velocity amplitude of the subdwarf.
We use the strongest 70 pulsation frequencies in the Kepler light curve of the
subdwarf as clocks to derive a third consistent measurement of the orbital
radial-velocity amplitude, from the orbital light-travel delay.
We use our high signal-to-noise average spectra to study the atmospheric
parameters of the sdB star, deriving Teff = 27 910K and log g = 5.41 dex, and
find that carbon, nitrogen and oxygen are underabundant relative to the solar
mixture.
Furthermore, we extract more than 160 significant frequencies from the Kepler
light curve. We investigate the pulsation frequencies for expected period
spacings and rotational splittings. We find period-spacing sequences of
spherical-harmonic degrees \ell=1 and \ell=2, and we associate a large fraction
of the g-modes in KIC11558725 with these sequences. From frequency splittings
we conclude that the subdwarf is rotating subsynchronously with respect to the
orbit
Absolute properties of the binary system BB Pegasi
We present a ground based photometry of the low-temperature contact binary BB
Peg. We collected all times of mid-eclipses available in literature and
combined them with those obtained in this study. Analyses of the data indicate
a period increase of 3.0(1) x 10^{-8} days/yr. This period increase of BB Peg
can be interpreted in terms of the mass transfer 2.4 x 10^{-8} Ms yr^{-1} from
the less massive to the more massive component. The physical parameters have
been determined as Mc = 1.42 Ms, Mh = 0.53 Ms, Rc = 1.29 Rs, Rh = 0.83 Rs, Lc =
1.86 Ls, and Lh = 0.94 Ls through simultaneous solution of light and of the
radial velocity curves. The orbital parameters of the third body, that orbits
the contact system in an eccentric orbit, were obtained from the period
variation analysis. The system is compared to the similar binaries in the
Hertzsprung-Russell and Mass-Radius diagram.Comment: 17 pages, 3 figures, accepted for Astronomical Journa
Angular Momentum Loss by Magnetic Braking and Gravitational Radiation in Relativistic Binary Stars
Angular momentum loss (AML) mechanisms and dynamical evolution owing to
magnetic braking and gravitational radiation in relativistic binary stars (RBS)
are studied with use of physical parameters collected from the literature. We
have calculated and compared AML time scales for the RBS with non-degenerate
components and double degenerate (DD) systems.Comment: 6 pages, 3 figure
Possible Disintegrating Short-Period Super-Mercury Orbiting KIC 12557548
We report here on the discovery of stellar occultations, observed with
Kepler, that recur periodically at 15.685 hour intervals, but which vary in
depth from a maximum of 1.3% to a minimum that can be less than 0.2%. The star
that is apparently being occulted is KIC 12557548, a K dwarf with T_eff = 4400
K and V = 16. Because the eclipse depths are highly variable, they cannot be
due solely to transits of a single planet with a fixed size. We discuss but
dismiss a scenario involving a binary giant planet whose mutual orbit plane
precesses, bringing one of the planets into and out of a grazing transit. We
also briefly consider an eclipsing binary, that either orbits KIC 12557548 in a
hierarchical triple configuration or is nearby on the sky, but we find such a
scenario inadequate to reproduce the observations. We come down in favor of an
explanation that involves macroscopic particles escaping the atmosphere of a
slowly disintegrating planet not much larger than Mercury. The particles could
take the form of micron-sized pyroxene or aluminum oxide dust grains. The
planetary surface is hot enough to sublimate and create a high-Z atmosphere;
this atmosphere may be loaded with dust via cloud condensation or explosive
volcanism. Atmospheric gas escapes the planet via a Parker-type thermal wind,
dragging dust grains with it. We infer a mass loss rate from the observations
of order 1 M_E/Gyr, with a dust-to-gas ratio possibly of order unity. For our
fiducial 0.1 M_E planet, the evaporation timescale may be ~0.2 Gyr. Smaller
mass planets are disfavored because they evaporate still more quickly, as are
larger mass planets because they have surface gravities too strong to sustain
outflows with the requisite mass-loss rates. The occultation profile evinces an
ingress-egress asymmetry that could reflect a comet-like dust tail trailing the
planet; we present simulations of such a tail.Comment: 14 pages, 7 figures; submitted to ApJ, January 10, 2012; accepted
March 21, 201
- …
