498 research outputs found

    Measuring Urban Green Space in Australia

    Full text link
    The Hort Innovation Green Cities project “Measuring Australia’s Green Space Asset” (MUGS) undertook a global review of urban green space (UGS) measurement research and engaged with Australian stakeholders to gauge current practice. The overall aim of the project was to foster best-practice UGS planning and management by juxtaposing the scientific state of the art with the contextualised needs expressed by potential Australian end users. The synthesis of findings informed a ‘blueprint’ which sketches the contours of a possible nationally consistent UGS decision-support framework. The framework is illustrated with a worked example from Australia (rapid assessment of urban green space assets using satellite imagery)

    PIC simulations of stable surface waves on a subcritical fast magnetosonic shock front

    Full text link
    We study with particle-in-cell (PIC) simulations the stability of fast magnetosonic shocks. They expand across a collisionless plasma and an orthogonal magnetic field that is aligned with one of the directions resolved by the 2D simulations. The shock speed is 1.6 times the fast magnetosonic speed when it enters a layer with a reduced density of mobile ions, which decreases the shock speed by up to 15\% in 1D simulations. In the 2D simulations, the density of mobile ions in the layer varies sinusoidally perpendicularly to the shock normal. We resolve one sine period. This variation only leads to small changes in the shock speed evidencing a restoring force that opposes a shock deformation. As the shock propagates through the layer, the ion density becomes increasingly spatially modulated along the shock front and the magnetic field bulges out where the mobile ion density is lowest. The perturbed shock eventually reaches a steady state. Once it leaves the layer, the perturbations of the ion density and magnetic field oscillate along its front at a frequency close to the lower-hybrid frequency; the shock is mediated by a standing wave composed of obliquely propagating lower-hybrid waves. We perform three 2D simulations with different box lengths along the shock front. The shock front oscillations are aperiodically damped in the smallest box with the fastest variation of the ion density, strongly damped in the intermediate one, and weakly damped in the largest box. The shock front oscillations perturb the magnetic field in a spatial interval that extends by several electron skin depths upstream and downstream of the shock front and could give rise to Whistler waves that propagate along the shock's magnetic field overshoot. Similar waves were observed in hybrid and PIC simulations and by the MMS satellite mission.Comment: 25 pages, 12 figures, accepted for publication in Physica Script

    Turbulence generation by a shock wave interacting with a random density inhomogeneity field

    Full text link
    When a planar shock wave interacts with a random pattern of pre-shock density non-uniformities, it generates an anisotropic turbulent velocity/vorticity field. This turbulence plays an important role at the early stages of the mixing process in the compressed fluid. This situation emerges naturally in shock interaction with weakly inhomogeneous deuterium-wicked foam targets in Inertial Confinement Fusion (ICF) and with density clumps/clouds in astrophysics. We present an exact small-amplitude linear theory describing such interaction. It is based on the exact theory of time and space evolution of the perturbed quantities behind a corrugated shock front for a single-mode pre-shock non-uniformity. Appropriate mode averaging in 2D results in closed analytical expressions for the turbulent kinetic energy, degree of anisotropy of velocity and vorticity fields in the shocked fluid, shock amplification of the density non-uniformity, and sonic energy flux radiated downstream. These explicit formulas are further simplified in the important asymptotic limits of weak/strong shocks and highly compressible fluids. A comparison with the related problem of a shock interacting with a pre-shock isotropic vorticity field is also presented.Comment: This article corresponds to a presentation given at the Second International Conference and Advanced School "Turbulent Mixing and Beyond," held on 27 July - 07 August 2009 at the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy. That Conference Proceeding will be published as a Topical Issue of the Physica Scripta IOP scienc

    Assessing soil erosion hazards using land-use change and landslide frequency ratio method: A case study of Sabaragamuwa province, Sri Lanka

    Full text link
    © 2020 by the authors. This study aims to identify the vulnerable landscape areas using landslide frequency ratio and land-use change associated soil erosion hazard by employing geo-informatics techniques and the revised universal soil loss equation (RUSLE) model. Required datasets were collected from multiple sources, such as multi-temporal Landsat images, soil data, rainfall data, land-use land-cover (LULC) maps, topographic maps, and details of the past landslide incidents. Landsat satellite images from 2000, 2010, and 2019 were used to assess the land-use change. Geospatial input data on rainfall, soil type, terrain characteristics, and land cover were employed for soil erosion hazard classification and mapping. Landscape vulnerability was examined on the basis of land-use change, erosion hazard class, and landslide frequency ratio. Then the erodible hazard areas were identified and prioritized at the scale of river distribution zones. The image analysis of Sabaragamuwa Province in Sri Lanka from 2000 to 2019 indicates a significant increase in cropping areas (17.96%) and urban areas (3.07%), whereas less dense forest and dense forest coverage are significantly reduced (14.18% and 6.46%, respectively). The average annual soil erosion rate increased from 14.56 to 15.53 t/ha/year from year 2000 to 2019. The highest landslide frequency ratios are found in the less dense forest area and cropping area, and were identified as more prone to future landslides. The river distribution zones Athtanagalu Oya (A-2), Kalani River-south (A-3), and Kalani River-north (A-9), were identified as immediate priority areas for soil conservation

    A Review on Assessing and Mapping Soil Erosion Hazard Using Geo-Informatics Technology for Farming System Management

    Full text link
    Soil erosion is a severe threat to food production systems globally. Food production in farming systems decreases with increasing soil erosion hazards. This review article focuses on geo-informatics applications for identifying, assessing and predicting erosion hazards for sustainable farming system development. Several researchers have used a variety of quantitative and qualitative methods with erosion models, integrating geo-informatics techniques for spatial interpretations to address soil erosion and land degradation issues. The review identified different geo-informatics methods of erosion hazard assessment and highlighted some research gaps that can provide a basis to develop appropriate novel methodologies for future studies. It was found that rainfall variation and land-use changes significantly contribute to soil erosion hazards. There is a need for more research on the spatial and temporal pattern of water erosion with rainfall variation, innovative techniques and strategies for landscape evaluation to improve the environmental conditions in a sustainable manner. Examining water erosion and predicting erosion hazards for future climate scenarios could also be approached with emerging algorithms in geo-informatics and spatiotemporal analysis at higher spatial resolutions. Further, geo-informatics can be applied with real-time data for continuous monitoring and evaluation of erosion hazards to risk reduction and prevent the damages in farming systems.</jats:p

    Trans-disciplinary research in synthesis of grass pollen aerobiology and its importance for respiratory health in Australasia

    Full text link
    © 2015 Published by Elsevier B.V. Grass pollen is a major trigger for allergic rhinitis and asthma, yet little is known about the timing and levels of human exposure to airborne grass pollen across Australasian urban environments. The relationships between environmental aeroallergen exposure and allergic respiratory disease bridge the fields of ecology, aerobiology, geospatial science and public health. The Australian Aerobiology Working Group comprised of experts in botany, palynology, biogeography, climate change science, plant genetics, biostatistics, ecology, pollen allergy, public and environmental health, and medicine, was established to systematically source, collate and analyse atmospheric pollen concentration data from 11 Australian and six New Zealand sites. Following two week-long workshops, post-workshop evaluations were conducted to reflect upon the utility of this analysis and synthesis approach to address complex multidisciplinary questions. This Working Group described i) a biogeographically dependent variation in airborne pollen diversity, ii) a latitudinal gradient in the timing, duration and number of peaks of the grass pollen season, and iii) the emergence of new methodologies based on trans-disciplinary synthesis of aerobiology and remote sensing data. Challenges included resolving methodological variations between pollen monitoring sites and temporal variations in pollen datasets. Other challenges included "marrying" ecosystem and health sciences and reconciling divergent expert opinion. The Australian Aerobiology Working Group facilitated knowledge transfer between diverse scientific disciplines, mentored students and early career scientists, and provided an uninterrupted collaborative opportunity to focus on a unifying problem globally. The Working Group provided a platform to optimise the value of large existing ecological datasets that have importance for human respiratory health and ecosystems research. Compilation of current knowledge of Australasian pollen aerobiology is a critical first step towards the management of exposure to pollen in patients with allergic disease and provides a basis from which the future impacts of climate change on pollen distribution can be assessed and monitored

    Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia

    Get PDF
    Each year, terrestrial ecosystems absorb more than a quarter of the anthropogenic carbon emissions, termed as land carbon sink. An exceptionally large land carbon sink anomaly was recorded in 2011, of which more than half was attributed to Australia. However, the persistence and spatially attribution of this carbon sink remain largely unknown. Here we conducted an observation-based study to characterize the Australian land carbon sink through the novel coupling of satellite retrievals of atmospheric CO2 and photosynthesis and in-situ flux tower measures. We show the 2010–11 carbon sink was primarily ascribed to savannas and grasslands. When all biomes were normalized by rainfall, shrublands however, were most efficient in absorbing carbon. We found the 2010–11 net CO2 uptake was highly transient with rapid dissipation through drought. The size of the 2010–11 carbon sink over Australia (0.97 Pg) was reduced to 0.48 Pg in 2011–12, and was nearly eliminated in 2012–13 (0.08 Pg). We further report evidence of an earlier 2000–01 large net CO2 uptake, demonstrating a repetitive nature of this land carbon sink. Given a significant increasing trend in extreme wet year precipitation over Australia, we suggest that carbon sink episodes will exert greater future impacts on global carbon cycle

    Differences in grass pollen allergen exposure across Australia

    Get PDF
    © 2015 The Authors © 2015 Public Health Association of Australia. Objective: Allergic rhinitis and allergic asthma are important chronic diseases posing serious public health issues in Australia with associated medical, economic, and societal burdens. Pollen are significant sources of clinically relevant outdoor aeroallergens, recognised as both a major trigger for, and cause of, allergic respiratory diseases. This study aimed to provide a national, and indeed international, perspective on the state of Australian pollen data using a large representative sample. Methods: Atmospheric grass pollen concentration is examined over a number of years within the period 1995 to 2013 for Brisbane, Canberra, Darwin, Hobart, Melbourne, and Sydney, including determination of the 'clinical' grass pollen season and grass pollen peak. Results: The results of this study describe, for the first time, a striking spatial and temporal variability in grass pollen seasons in Australia, with important implications for clinicians and public health professionals, and the Australian grass pollen-allergic community. Conclusions: These results demonstrate that static pollen calendars are of limited utility and in some cases misleading. This study also highlights significant deficiencies and limitations in the existing Australian pollen monitoring and data. Implications: Establishment of an Australian national pollen monitoring network would help facilitate advances in the clinical and public health management of the millions of Australians with asthma and allergic rhinitis

    Mulga, a major tropical dry open forest of Australia: Recent insights to carbon and water fluxes

    Get PDF
    © 2016 IOP Publishing Ltd. Mulga, comprised of a complex of closely related Acacia spp., grades from a low open forest to tall shrublands in tropical and sub-tropical arid and semi-arid regions of Australia and experiences warm-to-hot annual temperatures and a pronounced dry season. This short synthesis of current knowledge briefly outlines the causes of the extreme variability in rainfall characteristic of much of central Australia, and then discusses the patterns and drivers of variability in carbon and water fluxes of a central Australian low open Mulga forest. Variation in phenology and the impact of differences in the amount and timing of precipitation on vegetation function are then discussed. We use field observations, with particular emphasis on eddy covariance data, coupled with modelling and remote sensing products to interpret inter-seasonal and inter-annual patterns in the behaviour of this ecosystem. We show that Mulga can vary between periods of near carbon neutrality to periods of being a significant sink or source for carbon, depending on both the amount and timing of rainfall. Further, we demonstrate that Mulga contributed significantly to the 2011 global land sink anomaly, a result ascribed to the exceptional rainfall of 2010/2011. Finally, we compare and contrast the hydraulic traits of three tree species growing close to the Mulga and show how each species uses different combinations of trait strategies (for example, sapwood density, xylem vessel implosion resistance, phenological guild, access to groundwater and Huber value) to co-exist in this semi-arid environment. Understanding the inter-annual variability in functional behaviour of this important arid-zone biome and mechanisms underlying species co-existence will increase our ability to predict trajectories of carbon and water balances for future changing climates

    PIC simulations of stable surface waves on a subcritical fast magnetosonic shock front

    Get PDF
    We study with particle-in-cell (PIC) simulations the stability of fast magnetosonic shocks. They expand across a collisionless plasma and an orthogonal magnetic field that is aligned with one of the directions resolved by the 2D simulations. The shock speed is 1.6 times the fast magnetosonic speed when it enters a layer with a reduced density of mobile ions, which decreases the shock speed by up to 15\% in 1D simulations. In the 2D simulations, the density of mobile ions in the layer varies sinusoidally perpendicularly to the shock normal. We resolve one sine period. This variation only leads to small changes in the shock speed evidencing a restoring force that opposes a shock deformation. As the shock propagates through the layer, the ion density becomes increasingly spatially modulated along the shock front and the magnetic field bulges out where the mobile ion density is lowest. The perturbed shock eventually reaches a steady state. Once it leaves the layer, the perturbations of the ion density and magnetic field oscillate along its front at a frequency close to the lower-hybrid frequency; the shock is mediated by a standing wave composed of obliquely propagating lower-hybrid waves. We perform three 2D simulations with different box lengths along the shock front. The shock front oscillations are aperiodically damped in the smallest box with the fastest variation of the ion density, strongly damped in the intermediate one, and weakly damped in the largest box. The shock front oscillations perturb the magnetic field in a spatial interval that extends by several electron skin depths upstream and downstream of the shock front and could give rise to Whistler waves that propagate along the shock's magnetic field overshoot. Similar waves were observed in hybrid and PIC simulations and by the MMS satellite mission
    corecore