23 research outputs found

    Adiponectin Deficiency Promotes Tumor Growth in Mice by Reducing Macrophage Infiltration

    Get PDF
    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis

    Plasminogen Alleles Influence Susceptibility to Invasive Aspergillosis

    Get PDF
    Invasive aspergillosis (IA) is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855) correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser) where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn) was also identified in the human homolog (PLG; Gene ID 5340). An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT) recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection

    Platelet GPIIb supports initial pulmonary retention but inhibits subsequent proliferation of melanoma cells during hematogenic metastasis

    Get PDF
    Platelets modulate the process of cancer metastasis. However, current knowledge on the direct interaction of platelets and tumor cells is mostly based on findings obtained in vitro. We addressed the role of the platelet fibrinogen receptor glycoprotein IIb (integrin alpha IIb) for experimental melanoma metastasis in vivo. Highly metastatic B16-D5 melanoma cells were injected intravenously into GPIIb-deficient (GPIIb(-/-)) or wildtype (WT) mice. Acute accumulation of tumor cells in the pulmonary vasculature was assessed in real-time by confocal videofluorescence microscopy. Arrest of tumor cells was dramatically reduced in GPIIb(-/-) mice as compared to WT. Importantly, we found that mainly multicellular aggregates accumulated in the pulmonary circulation of WT, instead B16-D5 aggregates were significantly smaller in GPIIb(-/-) mice. While pulmonary arrest of melanoma was clearly dependent on GPIIb in this early phase of metastasis, we also addressed tumor progression 10 days after injection. Inversely, and unexpectedly, we found that melanoma metastasis was now increased in GPIIb(-/-) mice. In contrast, GPIIb did not regulate local melanoma proliferation in a subcutaneous tumor model. Our data suggest that the platelet fibrinogen receptor has a differential role in the modulation of hematogenic melanoma metastasis. While platelets clearly support early steps in pulmonary metastasis via GPIIb-dependent formation of platelet-tumor-aggregates, at a later stage its absence is associated with an accelerated development of melanoma metastases

    Serotonin reverts age-related capillarization and failure of regeneration in the liver through a VEGF-dependent pathway

    No full text
    The function of the liver is well-preserved during the aging process, although some evidence suggests that liver regeneration might be impaired with advanced age. We observed a decreased ability of the liver to restore normal volume after partial hepatectomy in elderly mice, and we identified a pathway that rescued regeneration and was triggered by serotonin. 2,5-dimethoxy-4-iodoamphetamine (DOI), a serotonin receptor agonist, reversed the age-related pseudocapillarization of old liver and improved hepatosinusoidal blood flow. After hepatectomy, the open fenestrae were associated with a restored attachment of platelets to endothelium and the initiation of a normal regenerative response, including the up-regulation of essential growth mediators and serotonin receptors. In turn, hepatocyte proliferation recovered along with regain of liver volume and animal survival. DOI operates through the release of VEGF, and its effects could be blocked with anti-VEGF antibodies both in vitro and in vivo. These results suggest that pseudocapillarization in the aged acts as a barrier to liver regeneration. DOI breaks this restraint through an endothelium-dependent mechanism driven by VEGF. This pathway highlights a target for reversing the age-associated decline in the capacity of the liver to regenerate

    Illustrated State-of-the-Art Capsules of the ISTH 2022 Congress

    No full text
    The ISTH London 2022 Congress is the first held (mostly) face-to-face again since the COVID-19 pandemic took the world by surprise in 2020. For 2 years we met virtually, but this year's in-person format will allow the ever-so-important and quintessential creativity and networking to flow again. What a pleasure and joy to be able to see everyone! Importantly, all conference proceedings are also streamed (and available recorded) online for those unable to travel on this occasion. This ensures no one misses out. The 2022 scientific program highlights new developments in hemophilia and its treatment, acquired and other inherited bleeding disorders, thromboinflammation, platelets and coagulation, clot structure and composition, fibrinolysis, vascular biology, venous thromboembolism, women's health, arterial thrombosis, pediatrics, COVID-related thrombosis, vaccine-induced thrombocytopenia with thrombosis, and omics and diagnostics. These areas are elegantly reviewed in this Illustrated Review article. The Illustrated Review is a highlight of the ISTH Congress. The format lends itself very well to explaining the science, and the collection of beautiful graphical summaries of recent developments in the field are stunning and self-explanatory. This clever and effective way to communicate research is revolutionary and different from traditional formats. We hope you enjoy this article and will be inspired by its content to generate new research ideas
    corecore