502 research outputs found

    Impulse oscillometry identifies peripheral airway dysfunction in children with adenosine deaminase deficiency.

    Get PDF
    Adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) is characterized by impaired T-, B- and NK-cell function. Affected children, in addition to early onset of infections, manifest non-immunologic symptoms including pulmonary dysfunction likely attributable to elevated systemic adenosine levels. Lung disease assessment has primarily employed repetitive radiography and effort-dependent functional studies. Through impulse oscillometry (IOS), which is effort-independent, we prospectively obtained objective measures of lung dysfunction in 10 children with ADA-SCID. These results support the use of IOS in the identification and monitoring of lung function abnormalities in children with primary immunodeficiencies

    Theory of Scanning Tunneling Spectroscopy of a Magnetic Adatom on a Metallic Surface

    Full text link
    A comprehensive theory is presented for the voltage, temperature, and spatial dependence of the tunneling current between a scanning tunneling microscope (STM) tip and a metallic surface with an individual magnetic adatom. Modeling the adatom by a nondegenerate Anderson impurity, a general expression is derived for a weak tunneling current in terms of the dressed impurity Green function, the impurity-free surface Green function, and the tunneling matrix elements. This generalizes Fano's analysis to the interacting case. The differential-conductance lineshapes seen in recent STM experiments with the tip directly over the magnetic adatom are reproduced within our model, as is the rapid decay, \sim 10\AA, of the low-bias structure as one moves the tip away from the adatom. With our simple model for the electronic structure of the surface, there is no dip in the differential conductance at approximately one lattice spacing from the magnetic adatom, but rather we see a resonant enhancement. The formalism for tunneling into small clusters of magnetic adatoms is developed.Comment: 12 pages, 9 figures; to appear in Phys. Rev.

    Electron correlation resonances in the transport through a single quantum level

    Full text link
    Correlation effects in the transport properties of a single quantum level coupled to electron reservoirs are discussed theoretically using a non-equilibrium Green functions approach. Our method is based on the introduction of a second-order self-energy associated with the Coulomb interaction that consistently eliminates the pathologies found in previous perturbative calculations. We present results for the current-voltage characteristic illustrating the different correlation effects that may be found in this system, including the Kondo anomaly and Coulomb blockade. We finally discuss the experimental conditions for the simultaneous observation of these effects in an ultrasmall quantum dot.Comment: 4 pages (two columns), 3 figures under reques

    Nonbackscattering Contribution to the Weak Localization

    Full text link
    We show that the enhancement of backscattering responsible for the weak localization is accompanied by reduction of the scattering in other directions. A simple quasiclassical interpretation of this phenomenon is presented in terms of a small change in the effective differential cross-section for a single impurity. The reduction of the scattering at the arbitrary angles leads to the decrease of the quantum correction to the conductivity. Within the diffusion approximation this decrease is small, but it should be taken into account in the case of a relatively strong magnetic field when the diffusion approximation is not valid.Comment: 18 pages, 6 figures, Submitted to PR

    Mesoscopic Full Counting Statistics and Exclusion models

    Get PDF
    We calculate the distribution of current fluctuations in two simple exclusion models. Although these models are classical, we recover even for small systems such as a simple or a double barrier, the same distibution of current as given by traditionnal formalisms for quantum mesoscopic conductors. Due to their simplicity, the full counting statistics in exclusion models can be reduced to the calculation of the largest eigenvalue of a matrix, the size of which is the number of internal configurations of the system. As examples, we derive the shot noise power and higher order statistics of current fluctuations (skewness, full counting statistics, ....) of various conductors, including multiple barriers, diffusive islands between tunnel barriers and diffusive media. A special attention is dedicated to the third cumulant, which experimental measurability has been demonstrated lately.Comment: Submitted to Eur. Phys. J.

    Mesoscopic Kondo Effect in an Aharonov-Bohm Ring

    Full text link
    An interacting quantum dot inserted in a mesoscopic ring is investigated. A variational ansatz is employed to describe the ground state of the system in the presence of the Aharonov-Bohm flux. It is shown that, for even number of electrons with the energy level spacing smaller than the Kondo temperature, the persistent current has a value similar to that of a perfect ring with the same radius. On the other hand, for a ring with odd number electrons, the persistent current is found to be strongly suppressed compared to that of an ideal ring, which implies the suppression of the Kondo-resonant transmission. Various aspects of the Kondo-assisted persistent current are discussed.Comment: 4 pages Revtex, 4 Postscript figures, final version to appear in Phys. Rev. Lett. 85, No.26 (Dec. 25, 2000

    Quantum interference effects in p-Si1−xGex quantum wells

    Get PDF
    Quantum interference effects, such as weak localization and electronelectron interaction (EEI), have been investigated in magnetic fields up to 11 T for hole gases in a set of Si1−xGex quantum wells with 0.13 < x < 0.95. The temperature dependence of the hole phase relaxation time has been extracted from the magneto-resistance between 35 mK and 10 K. The spin-orbit effects that can be described within the Rashba model were observed in low magnetic fields. A quadratic negative magneto-resistance was observed in strong magnetic fields, due to the EEI effect. The hole-phonon scattering time was determined from hole overheating in a strong magnetic field

    Kondo effect in coupled quantum dots under magnetic fields

    Full text link
    The Kondo effect in coupled quantum dots is investigated theoretically under magnetic fields. We show that the magnetoconductance (MC) illustrates peak structures of the Kondo resonant spectra. When the dot-dot tunneling coupling VCV_C is smaller than the dot-lead coupling Δ\Delta (level broadening), the Kondo resonant levels appear at the Fermi level (EFE_F). The Zeeman splitting of the levels weakens the Kondo effect, which results in a negative MC. When VCV_{C} is larger than Δ\Delta, the Kondo resonances form bonding and anti-bonding levels, located below and above EFE_F, respectively. We observe a positive MC since the Zeeman splitting increases the overlap between the levels at EFE_F. In the presence of the antiferromagnetic spin coupling between the dots, the sign of MC can change as a function of the gate voltage.Comment: 6 pages, 3 figure

    Renormalization Group Approach to Non-equilibrium Green Functions in Correlated Impurity Systems

    Full text link
    We present a technique for calculating non-equilibrium Green functions for impurity systems with local interactions. We use an analogy to the calculation of response functions in the x-ray problem.The initial state and the final state problems, which correspond to the situations before and after the disturbance (an electric or magnetic field, for example) is suddenly switched on, are solved with the aid of Wilson's momentum shell renormalization group. The method is illustrated by calculating the non-equilibrium dynamics of the ohmic two-state problem.Comment: 7 pages, 2 figure

    Semiclassical theory of shot-noise suppression

    Get PDF
    The Boltzmann-Langevin equation is used to relate the shot-noise power of a mesoscopic conductor to classical transmission probabilities at the Fermi level. This semiclassical theory is applied to tunneling through n barriers in series. For n -> infinity the shot noise approaches one third of the Poisson noise, independent of the transparency of the barriers. This confirms that the one-third suppression known to occur in diffusive conductors does not require phase coherence.Comment: pages, RevTeX, 1 figur
    corecore