1,436 research outputs found

    Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods

    Get PDF
    A new reduced dimension adaptive GDSW (Generalized Dryja-Smith-Widlund) overlapping Schwarz method for linear second-order elliptic problems in three dimensions is introduced. It is robust with respect to large contrasts of the coefficients of the partial differential equations. The condition number bound of the new method is shown to be independent of the coefficient contrast and only dependent on a user-prescribed tolerance. The interface of the nonoverlapping domain decomposition is partitioned into nonoverlapping patches. The new coarse space is obtained by selecting a few eigenvectors of certain local eigenproblems which are defined on these patches. These eigenmodes are energy-minimally extended to the interior of the nonoverlapping subdomains and added to the coarse space. By using a new interface decomposition the reduced dimension adaptive GDSW overlapping Schwarz method usually has a smaller coarse space than existing GDSW and adaptive GDSW domain decomposition methods. A robust condition number estimate is proven for the new reduced dimension adaptive GDSW method which is also valid for existing adaptive GDSW methods. Numerical results for the equations of isotropic linear elasticity in three dimensions confirming the theoretical findings are presented

    The HST Cosmos Project: Contribution from the Subaru Telescope

    Full text link
    The Cosmic Evolution Survey (COSMOS) is a Hubble Space Telescope (HST) treasury project.The COSMOS aims to perform a 2 square degree imaging survey of an equatorial field in II(F814W) band, using the Advanced Camera for Surveys (ACS). Such a wide field survey, combined with ground-based photometric and spectroscopic data, is essential to understand the interplay between large scale structure, evolution and formation of galaxies and dark matter. In 2004, we have obtained high-quality, broad band images of the COSMOS field (B,V,r,i,B, V, r^\prime, i^\prime, and z z^\prime) using Suprime-Cam on the Subaru Telescope, and we have started our new optical multi-band program, COSMOS-21 in 2005. Here, we present a brief summary of the current status of the COSMOS project together with contributions from the Subaru Telescope. Our future Subaru program, COSMOS-21, is also discussed briefly.Comment: 4 pages, 3 figures, to appear in the Proceedings of the 6th East Asian Meeting on Astronomy, JKAS, 39, in pres

    Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain

    Get PDF
    The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is 'memorized' by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.Instituto de Biotecnologia y Biologia Molecula

    Aeromechanics Analysis of a Distortion-Tolerant Fan with Boundary Layer Ingestion

    Get PDF
    A propulsion system with Boundary Layer Ingestion (BLI) has the potential to significantly reduce aircraft engine fuel burn. But a critical challenge is to design a fan that can operate continuously with a persistent BLI distortion without aeromechanical failure -- flutter or high cycle fatigue due to forced response. High-fidelity computational aeromechanics analysis can be very valuable to support the design of a fan that has satisfactory aeromechanic characteristics and good aerodynamic performance and operability. Detailed aeromechanics analyses together with careful monitoring of the test article is necessary to avoid unexpected problems or failures during testing. In the present work, an aeromechanics analysis based on a three-dimensional, time-accurate, Reynolds-averaged Navier-Stokes computational fluid dynamics code is used to study the performance and aeromechanical characteristics of the fan in both circumferentially-uniform and circumferentially-varying distorted flows. Pre-test aeromechanics analyses are used to prepare for the wind tunnel test and comparisons are made with measured blade vibration data after the test. The analysis shows that the fan has low levels of aerodynamic damping at various operating conditions examined. In the test, the fan remained free of flutter except at one near-stall operating condition. Analysis could not be performed at this low mass flow rate operating condition since it fell beyond the limit of numerical stability of the analysis code. The measured resonant forced response at a specific low-response crossing indicated that the analysis under-predicted this response and work is in progress to understand possible sources of differences and to analyze other larger resonant responses. Follow-on work is also planned with a coupled inlet-fan aeromechanics analysis that will more accurately represent the interactions between the fan and BLI distortion

    The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy

    Get PDF
    Observations of the extraordinarily bright optical afterglow (OA) of GRB 991208 started 2.1 d after the event. The flux decay constant of the OA in the R-band is -2.30 +/- 0.07 up to 5 d, which is very likely due to the jet effect, and after that it is followed by a much steeper decay with constant -3.2 +/- 0.2, the fastest one ever seen in a GRB OA. A negative detection in several all-sky films taken simultaneously to the event implies either a previous additional break prior to 2 d after the occurrence of the GRB (as expected from the jet effect). The existence of a second break might indicate a steepening in the electron spectrum or the superposition of two events. Once the afterglow emission vanished, contribution of a bright underlying SN is found, but the light curve is not sufficiently well sampled to rule out a dust echo explanation. Our determination of z = 0.706 indicates that GRB 991208 is at 3.7 Gpc, implying an isotropic energy release of 1.15 x 10E53 erg which may be relaxed by beaming by a factor > 100. Precise astrometry indicates that the GRB coincides within 0.2" with the host galaxy, thus given support to a massive star origin. The absolute magnitude is M_B = -18.2, well below the knee of the galaxy luminosity function and we derive a star-forming rate of 11.5 +/- 7.1 Mo/yr. The quasi-simultaneous broad-band photometric spectral energy distribution of the afterglow is determined 3.5 day after the burst (Dec 12.0) implying a cooling frequency below the optical band, i.e. supporting a jet model with p = -2.30 as the index of the power-law electron distribution.Comment: Accepted for publication in Astronomy and Astrophysics, 9 pages, 6 figures (Fig. 3 and Fig. 4 have been updated

    Arabidopsis KCBP interacts with AIR9 but stays in the cortical division zone throughout mitosis via its MyTH4-FERM domain

    Get PDF
    The preprophase band of microtubules performs the crucial function of marking the plane of cell division. Although the preprophase band depolymerises at the onset of mitosis, the division plane is 'memorized' by a cortical division zone to which the phragmoplast is attracted during cytokinesis. Proteins have been discovered that are part of the molecular memory but little is known about how they contribute to phragmoplast guidance. Previously, we found that the microtubule-associated protein AIR9 is found in the cortical division zone at preprophase and returns during cell plate insertion but is absent from the cortex during the intervening mitosis. To identify new components of the preprophase memory, we searched for proteins that interact with AIR9. We detected the kinesin-like calmodulin-binding protein, KCBP, which can be visualized at the predicted cortical site throughout division. A truncation study of KCBP indicates that its MyTH4-FERM domain is required for linking the motor domain to the cortex. These results suggest a mechanism by which minus-end-directed KCBP helps guide the centrifugally expanding phragmoplast to the cortical division site.Instituto de Biotecnologia y Biologia Molecula
    corecore