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ADAPTIVE GDSW COARSE SPACES OF REDUCED DIMENSION
FOR OVERLAPPING SCHWARZ METHODS

ALEXANDER, HEINLEIN*! AXEL KLAWONN*f JASCHA KNEPPER*, OLIVER
RHEINBACH?!, AND OLOF B. WIDLUNDS$

Abstract. A new reduced dimension adaptive GDSW (Generalized Dryja-Smith-Widlund)
overlapping Schwarz method for linear second-order elliptic problems in three dimensions is in-
troduced. It is robust with respect to large contrasts of the coefficients of the partial differential
equations. The condition number bound of the new method is shown to be independent of the co-
efficient contrast and only dependent on a user-prescribed tolerance. The interface of the nonover-
lapping domain decomposition is partitioned into nonoverlapping patches. The new coarse space is
obtained by selecting a few eigenvectors of certain local eigenproblems which are defined on these
patches. These eigenmodes are energy-minimally extended to the interior of the nonoverlapping
subdomains and added to the coarse space. By using a new interface decomposition the reduced
dimension adaptive GDSW overlapping Schwarz method usually has a smaller coarse space than
existing GDSW and adaptive GDSW domain decomposition methods. A robust condition number
estimate is proven for the new reduced dimension adaptive GDSW method which is also valid for
existing adaptive GDSW methods. Numerical results for the equations of isotropic linear elasticity
in three dimensions confirming the theoretical findings are presented.

Key words. domain decomposition, multiscale, GDSW, overlapping Schwarz, adaptive coarse
spaces, reduced dimension

AMS subject classifications. 65F08,65F10,65N55,68W10

1. Introduction. Successful domain decomposition preconditioners for solv-
ing elliptic problems all require at least one global, coarse-level component in order
to perform satisfactorily if the number of subdomains, into which the given domain
has been decomposed, is relatively large. The design and analysis of these coarse
components is central in most studies in this field given that they require global
communication if the algorithms are implemented on distributed or parallel com-
puting systems. In order to avoid creating a bottleneck, it is very important to keep
the dimension of the related coarse space small.

In recent years, substantial progress has been possible by the development of
algorithms which adaptively design the coarse space at a cost of solving local gen-
eralized eigenvalue problems. In this paper, we will focus on a particular family
of domain decomposition algorithms, the two-level overlapping Schwarz methods,
which use one coarse-level component in addition to local components each of which
is defined on a subdomain which is part of an overlapping decomposition. We note
that the use of adaptively designed coarse spaces has been very successful even with
problems with very irregular coefficients; this is clearly demonstrated by examples
in section 14 of this paper.

The robustness of many coarse spaces for arbitrary coefficient functions is ob-
tained by using local generalized eigenvalue problems to adaptively enrich the coarse
spaces with suitable basis functions; see, e.g., [14, 10, 41, 15, 20, 13]. These ap-
proaches differ, e.g., in the sizes of the eigenvalue problems, the coarse space di-
mensions, the class of problems considered, and their parallel efficiency. We also
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2 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

mention success with adaptive coarse spaces for nonoverlapping domain decompo-
sition methods; see, e.g., [2, 34, 35, 42, 37, 31, 33, 38, 30, 32, 306].

Two-level overlapping Schwarz algorithms were first developed with coarse spa-
ces based on a coarse triangulation of the domain and with subdomains obtained
by adding one or a few layers of fine elements to each coarse mesh element, see [43,
Chapter 3]. On the other hand, the iterative substructuring algorithms, developed
for decompositions of the domain into nonoverlapping subdomains, were immedi-
ately available for quite irregular subdomains such as those that can be obtained by
a mesh partioner such as METIS [29]; see [43, Chapter 4, 5, and 6]. The iterative
substructuring algorithms have been very successful but they cannot be used unless
submatrices associated with the subdomains are available instead of just a fully
assembled stiffness matrix. This was a main reason why a new family of overlap-
ping Schwarz algorithms was developed, known as the GDSW methods (generalized
Dryja—Smith-Widlund), which borrow their coarse components from [43, Algorithm
5.16]. These ideas were first developed in [5, 6]. The elements of these coarse spaces
are defined by their values on the interface between the subdomains with values
in the interiors defined by energy-minimizing extensions. These algorithms were
further developed for almost incompressible elasticity in two papers [7, 8]; in the
second paper the dimension of the coarse spaces was considerably decreased; see
also [23, 16, 24, 25, 17, 22, 26] for further developments.

In this paper, we present an approach of constructing adaptive coarse spaces
for the two-level overlapping Schwarz method [40, 43] based on the adaptive GDSW
(AGDSW) coarse space of [21]. In particular, our focus is on one new coarse space —
the reduced dimension adaptive GDSW (RAGDSW) coarse space — and the reduc-
tion of the coarse space dimension. A proof of a condition number estimate, which
is independent of heterogeneities of the coefficient functions, is given in sections 10
and 11. We note that this proof is based on a more general decomposition of the
interface than the one in [21]; it applies to both, the original AGDSW and the new
RAGDSW coarse space. Supporting numerical results are presented in section 14.

In our adaptive algorithms, a user prescribed tolerance directly controls the
condition number of the preconditioned operator and, if this tolerance is chosen as
zero, adaptive GDSW is identical to GDSW and reduced dimension adaptive GDSW
is identical to reduced dimension GDSW, the latter being a variant of GDSW defined
on a specific interface partition of the domain decomposition; cf. section 8.

We note that our reduced dimension GDSW coarse space differs from the re-
duced dimension GDSW coarse spaces in [9]. However, they share the same core
idea: GDSW and AGDSW use basis functions associated with coarse nodes, edges,
and faces while the coarse spaces in [9], reduced dimension GDSW, and reduced
dimension adaptive GDSW use basis functions associated only with subdomain
vertices. Generally, this leads to a reduction in the coarse space dimension. See
also [8, 4, 27, 18] for reduced dimension GDSW coarse spaces.

We note that many other approaches to constructing coarse spaces exist. Some
borrow the idea from the multiscale finite element method (MsFEM) [28, 12] and
use basis functions of that type in the coarse space; c.f. [1, 3, 15, 20, 13]. However,
the coarse spaces in this paper are not based on MsFEM functions.

The outline of the paper is as follows: In section 2, we introduce our model
problem followed by the definition of the two-level additive overlapping Schwarz
methods in section 3. In the following five sections, we introduce four families of
GDSW algorithms. In section 9, we give a quite general description of adaptive
GDSW coarse spaces which covers both adaptive GDSW and reduced dimension
adaptive GDSW; see also section 12 for a variant which is computationally cheaper,
easier to implement and more efficient in a parallel implementation. In sections 10
and 11, we derive a condition number estimate for our new reduced dimension
adaptive GDSW preconditioner. In section 13, we address questions that may arise
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TABLE 1
Reference table for some definitions used in this paper (in order of their appearance).

Description of coarse spaces (sections 4 —8)

xh finite element node section 4
P nonoverlapping partition of the interface section 4
ﬁé union of the closure of the subdomains adjacent to a £ € P section 5
{51}?:51 partitioning of a £ € P into nodal equivalence classes

structured mesh, structured domain decomposition eq. (7.1)

unstructured mesh, unstructured domain decomposition section 8
n(z") index set of subdomains which contain z" eq. (8.1)

Theory (sections 9—11)
nt index set of subdomains adjacent to a £ € P eq. (9.1)
zesa(t) extension by zero from & to G eq. (9.2)
Xh(¢) XP(g) = {v: £ - R3} section 9
Hesa, () energy—minimf;l extension from & to Q¢ eq. (9.3)
ce(u,v) ce(u,v) =305 ce, (u,v) eq. (9.4)
ce,; (u,v) ce,; (u,v) := aQ,. (ZEHQ&' (w), g0, (v)) eq. (9.5)
lal2, | lul, = ee(u,u) eq. (9.6)
Mew Il := E/\k,gﬁtolg ce(w, v ¢ )vk,e eq. (10.1)
IIpw Hpw:=3ccp Hew eq. (10.1)
|ulg, ulg = V/de(u,u), de(--) i= an, (Hesa, () Hesa, (1) eq. (10.2)
|“|a(B) |U\a(B) = +/ap(u,u) eq. (10.3)
r max. number of vertices of a finite element Lemma 11.2

P() £ € P adjacent to subdomain % eq. (11.1)
N¢ max. number of £ € P adjacent to a subdomain eq. (11.1)
tolp tolp := mingep tole Lemma 11.2
Nee,p Neeyp = Ugepl&ii=1,... ng} eq. (11.2)
C measure for the P-connectivity of the domain decomposition | eq. (11.3)

about the implementation due to the encounter of singular matrices for certain ex-
tension operators described in section 9. Finally, in section 14, we present numerical
results for a selection of coefficient functions.

For the reader’s convenience, an overview of some definitions is given in Table 1.

2. Linear elasticity. We will consider a variational formulation of the equa-
tions of compressible linear elasticity: Find u € (H& (Q))3 such that

(2.1) aq (u,v) = L(v) Yo € (Hé(Q))S,

where Q C R? is a polyhedral domain and

aq (u,v) = /QQ/L(J?) (E(U(SC)) : E(U(CL’))) dx +/

) /\(x)(div(u(x)) div(v(:c))) dz,
L(v) := /Qf(x) -v(z) de.

The Lamé parameters 0 < A(x), u(z): R® — R are scalar coefficient functions,
3
fe (L),
e(u) = %(Vqu (VU)T>

and

d
A:B:= tY(ATB) = Z AijBij.

i,j=1

for any matrices A, B € R3*3,
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4 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

We will consider problems with a highly heterogeneous Young modulus E: 2 —
R, 0 < Epin < E(z) < Epax, and a positive Poisson ratio v, bounded away, from
above, by 1/2, and we define the Lamé parameters by

o E(x)v
A@) =G0
_ B

The algorithms described in this paper can also be applied to other linear,
second-order elliptic problems including those in two dimensions.

Let 73, := 7,(€2) be a finite element discretization of 2. We will use a conforming
space V() of piecewise linear or trilinear finite elements on this mesh, and for
simplicity assume that the Lamé parameters are constant on each element T € 7.

We will use the conjugate gradient method preconditioned by two-level over-
lapping Schwarz methods to solve the resulting linear system Ku = b.

For completeness, we note that the Dirichlet boundary condition has been in-
corporated into the global stiffness matrix by setting those rows and columns of K
to unit vectors that correspond to Dirichlet boundary nodes.

3. Two-level overlapping Schwarz methods. We will now introduce the
two-level Schwarz algorithms, mostly following [43, Chapter 2.2]. The different
variants considered in this paper will differ in the coarse space chosen; the design of
the coarse space is the main issue in this study and many other studies of algorithms
of this kind. In the next five sections, we will introduce four different variants. In
section 12, we also explore alternatives that decrease the costs of using the two
algorithms which use adaptive choices of their coarse spaces.

We partition the domain €2 into N nonoverlapping subdomains €2; with a max-
imum diameter H, each a union of finite elements, and denote the corresponding
interface by I' := (J,; (092; N 99;) \ 9Q. We extend each subdomain €2; by k lay-
ers of finite elements to obtain an overlapping domain decomposition {Q/}¥ ; and
introduce subspaces V; := V*(Q}),i € 1,...,N, of finite element functions that
vanish on 0€, and in the complement of 2.

Associated with each such subdomain is a restriction operator R; : V*(Q) — V;
and an extension operator R : V; — V". Furthermore, for any global coarse space
Vo € V", we define a linear interpolation operator Ry : V" — Vj, where each of
the columns of the matrix R{ represents a coarse basis function defined on the fine
mesh 7.

We will use exact solvers for all the subspaces defined in terms of bilinear forms
onV;,i€{0,1,..., N}, given by

a; (ui,v;) = aq (RIus, RTv;) Vi, v; € Vi

cf. [43, Chapter 2.2]. The associated matrices are given by K; = R; KR!, i =
0,1,...,N. The additive one-level Schwarz preconditioned operator is given by
Pos.1 = Eivzl RlTK i_lRiK , and that of the additive two-level Schwarz operator by

Pos.o = Ry K 'RoK + Pogs 1.

4. The GDSW preconditioner. In what follows, 2" will denote a finite
element node. Those on the interface form the set I'" := {z" € T'}. A key ingredient
of each of our coarse spaces is a partition P of I'" into disjoint interface components
hcrh st

= J ¢

ghep
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(A)GDSW partitioning GDSW vertex function GDSW edge function
)\ )\
3 )

)4
3
e
3
)4
3
4
3
3
3

3
3
e
3
3
3
e
3
3
3
1

R(A)GDSW partitioning RGDSW basis function

Fic. 1. Left: Decomposition of the interface T". Top-Left: Decomposition of ' into
16 components: 4 vertices and 12 edges (with 4 nodes each) as used in the GDSW and adaptive
GDSW method. Bottom-Left: Decomposition of T'" into 4 components as used in the reduced
dimenston GDSW and reduced dimension adaptive GDSW methods. Right: Corresponding coarse
functions for a two-dimensional diffusion problem are shown on the right for GDSW (top) and
RGDSW (bottom). Homogeneous Dirichlet boundary conditions are assumed on Q. The GDSW
vertez function (top-center) corresponds to the blue verter. The GDSW edge function (top-right)
corresponds to the edge between the blue and magenta vertices. The RGDSW coarse function
(bottom-right) corresponds to the green component.

To simplify, we will omit the superscript h and write ¢ instead of &".

The GDSW, [5, 6], AGDSW, [19, 21], RGDSW, [9, 27] and section 6, and
RAGDSW, section 7, preconditioners are two-level overlapping Schwarz methods,
and their preconditioners can be written in matrix form as

N
M=o (@"Ke) o + Y RIK; 'R,

=1

The basis functions of all our coarse spaces, i.e., the columns of ®, are defined by an
energy-minimal extension of the values ®r on the interface I'* to the subdomains,
i.e., by

P = |:(I)I:| = HF(DI‘, Hp = |:

~K;} Kir
br :

Ir

Here It is the identity matrix on '™ and Hr is constructed from submatrices of the
global stiffness matrix

Krir Kir
K =
[KFI KFF} ’

where I refers to the set of variables not associated with the interface. We note
that I also contains boundary nodes of 2. We note that Kj; is block-diagonal and
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6 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

that Kr; = K7 also can be written in block form as

1
Kp)
K= 7KF1:[K§1[) Lo K
N
Ky

The superscripts of these matrices mark contributions from the subdomains £2; to
the stiffness matrix K.

Given the sparsity of the stiffness matrix, reflecting the local coupling of the
variables, all these matrix blocks are sparse and the coarse space basis functions
are each associated only with a few subdomains. In the original GDSW method for
the scalar two-dimensional case, the columns of ®r are given by the characteristic
functions of vertices and subdomain edges, i.e., the interface is partitioned as follows:
I = (Uuev v) U (UeEE e), where V and &£ are the sets of subdomain vertices
and edges, respectively, cf. Figure 1 (top-left) for the interface partition and (top-
right) for two corresponding coarse functions. For the three dimensional case, the
basis functions are defined analogously, using characteristic functions for interface
vertices, edges, and faces.

In more general cases, the boundary values on I' span the restriction of the null
space of K~ to ', where K¥ is the stiffness matrix given by aq(-,-) with a Neumann
boundary condition on 92. Thus, for linear elasticity in three dimensions, and any
subdomain edge which is not straight, we obtain 6 functions: 3 translations and 3
rotations. We note that the restriction of the rigid body modes to a straight edge
are linear dependent; see [7].

The matrix of the GDSW coarse operator can be computed either by forming
the triple matrix product

'K

or by exploiting the fact that

_ T B
‘I)TK(I): |: _KIllKIFq)F :| [ Krir Kir :| |: —KIIIK[[‘(I)F :|
Or Krr Krr Or
= &L Srrdr,

where Srr = Kpr — KFIKl_Il Kr is the Schur complement obtained by eliminating
the interior variables of all subdomains and those on the boundary of €.

5. Standard adaptive GDSW coarse space. The standard adaptive
GDSW method, the AGDSW method, uses the same interface partitioning P, based
on subdomain vertices, edges, and faces, as the GDSW method. The coarse func-
tions for the vertices are the same as for the GDSW variant but the columns of &
corresponding to the edges and faces are not. Instead, we use a few of the eigen-
functions of local generalized eigenvalue problems of the form

Q
(5.1) SeeTue = )\*,5[(5;7'*,5,
where £ corresponds to an edge or a face.

To define the Schur complement S¢e and the matrix K?;, for any edge and
face ¢, we will use the local stiffness matrix K% on Q¢ with Neumann boundary
conditions. Here ﬁg is the closure of the union of all subdomains which are adjacent
to £ and Q¢ := Q¢ \ 99 its interior. The stiffness matrix K is defined by aq, (-, ")
and can be assembled from the subdomain stiffness matrices of the subdomains
adjacent to the edge or face.



225
226
227
228
229
230

232
233
234
235
236
237
238
239

241
242
243
244
245
246

247

249

[\
[SN

0 b

NN
ot Ot Ot
[\

Tt e W

N NN NN

ot Ot Ot Ot Ot Ot
~

[\
)

Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods 7

We partition the degrees of freedom of )¢ into the set associated with ¢ and
the rest which forms a set R and write the stiffness matrix as

Q Q

KQ5 _ KR%{ KRE
BV
¢R 133

and can then define the Schur complement by

Q Q 2\ 0
See 1= K¢ — Kep (KR%) Kpe,

+
where (K Rj{) is a pseudoinverse of K%; see Remark 9.1 and section 13.

We sort the eigenvalues of (5.1) in nondescending order; i.e., A e < Age < ... <
Am,¢ Where m is the number of unknowns of (5.1). We select all eigenvectors T ¢,
with eigenvalues smaller or equal than a certain threshold, i.e., A, ¢ < tol¢ and then
define 7, r as the extension by zero of 7. ¢ from & to ', The coarse basis functions
corresponding to & are then the extensions

v*75 = HFT*,F

and the columns of ® are now given by the v, ¢, selected, and the GDSW vertex
functions.

Let tole and tolx be the smallest tolerance used for the subdomain edges and
faces, respectively. The following condition number estimate for the preconditioned
operator has been derived previously for scalar diffusion problems; see [21, Corol-
lary 6.6]:

LEMMA 5.1. The condition number of the AGDSW two-level Schwarz operator
in three dimensions is bounded by

34(N¥€)2né 63(NT)2 .
K(MidpswK) < (20+ (V) i + (V) ) (Nc+1).

tOlg tOl]:

The constant N, is an upper bound of the number of overlapping subdomains that
any point " € Q can belong to. N¢ and N* are the mazimum number of subdomain
edges and faces, respectively, of any subdomain. nt,,. is the mazimum number of
subdomains that share a subdomain edge. All constants are independent of H, h,

and the contrast of the coefficient function.

This kind of result also holds for linear elasticity; see Corollary 11.5 and section 11.
Remark 5.2. If tole = 0 for all £ € P, the AGDSW coarse space contains only

the coarse functions of the GDSW coarse space. Thus, we obtain

Vtol(P)

_ 1,0 )
Vepsw = Vaapsw € Vagpsws

cf. also Remark 7.1.

6. A reduced dimension GDSW coarse space. We will first give a simple
description of an interface partition for a structured mesh and domain decomposi-
tion. This partition can also be used for the reduced dimension adaptive GDSW
coarse spaces.

Our goal is to reduce the number of interface components. To this end, each
vertex of the coarse mesh will be associated with an interface component & formed by
parts of the edges and faces adjacent to the vertex. A disjoint partition is obtained
by distributing parts of these faces and edges equally, or almost equally, between
nearby vertices; see Figure 1 (bottom-left) for a two-dimensional representation.
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FOODO--- 0

Ty S A eTeroros

Fic. 2. Left: Partitioning of the RGDSW interface components into the respective parts of
vertices and edges as required for the right hand side of the generalized eigenvalue problem in
the RAGDSW method. Fach component is partitioned into 5 subcomponents (4 edges, 1 vertez).
Right: The image shows a case, in which a NEC can consist of two disjoint connected components.
The interface of the domain Q = U?ZlQi is indicated by thick black lines.

The reduced dimension GDSW coarse space is then defined completely analo-
gously to the GDSW coarse space. Thus the restriction of the null space elements
to the interface components is first extended by zero to the rest of the interface
nodes and then extended with minimal energy to the subdomain interiors to obtain
the coarse functions; see Figure 1 (bottom-right) for one of the coarse functions for
a two-dimensional diffusion problem.

We note that our RGDSW coarse space differs from those of [9] but that can
be regarded as a variant of the coarse spaces introduced in that paper.

7. The reduced dimension adaptive GDSW coarse space. For the re-
duced adaptive GDSW coarse space, we need to partition each interface component
&, as those of the previous section, into subcomponents. For a structured mesh and
domain decomposition, as in that section, we partition each & into subsets related to
the subdomain vertices, edges, and faces. With V, £, and F the sets of subdomain
vertices, edges, and faces, respectively, we define subcomponents &; of £ such that

(7.1) {&15, ={Nc:c€VUEUF A ené # 0},

where n¢ is the number of subcomponents of &; see Figure 2 (left) for a two-
dimensional case. We next partition K 59; with respect to the subsets {fi}?il, into
Q Qe \ "¢
Ko = (K38
133 §i&; ij=1
and, as before, we define the Schur complement by
Q Q 2\ 0
See 1= K¢ — Kep (KR%> Kpe,

+
where (Kg%) is a pseudoinverse of Kg%; see Remark 9.1 and section 13. Fur-
thermore, let
~ . Q
(7.2) Reg 1= blockdiag(Ke,( )

and introduce a generalized eigenvalue problem, given in matrix form by

SeeTie = MeKeeTue.

As in section 5, the eigenvalues are sorted in a nondecreasing order and eigen-
vectors 7, ¢ corresponding to A, ¢ < tolg are selected and then extended by zero to
I'" as T«,0- The coarse basis functions, i.e., the columns of ®, corresponding to &
are the extensions v, ¢ := Hr T, r.
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Remark 7.1. If tolg = 0 for all £ € P, the RAGDSW coarse space contains only
the coarse functions associated with the null space of the Schur complement See.
The latter is identical to the null space of K¢ restricted to £&. Thus, in this case,
RAGDSW reduces to RGDSW, and we have

Veapsw = VRagpsw C Vrt{(/)xlggsw~

8. Interface partitioning for RAGDSW on unstructured meshes. For
unstructured cases, we will define the partitioning P using nodal equivalence classes
and begin with definitions of connected components of finite element nodes and of
nodal equivalence classes. We note that equivalence classes have previously been
used in [9] for similar purposes.

Two finite element nodes z%, 2% € T are said to be adjacent, if there exists
a finite element edge or face z C T' such that xf, 25 € Z, the closure of z. A set
of nodes vy C T is said to form a connected component, if, for any two nodes

xl, x? € v, there exists a path (zf,...,2"), 2 € , of adjacent nodes.
For any node " € Q, let
(8.1) n(z") = {ie{1,2,...,N} : 2" € Q;}

be the set of indices of the subdomains which have z" in common. To partition

a set of nodes v C I'", we define nodal equivalence classes (NECs) by the relation
oh ~ 2k & n(ah) = n(2h), for any two nodes 2%, x4 € . We further partition each
NEC into its connected components based on the adjacency of nodes; cf. Figure 2
(right).

By N (z"), we denote the NEC of a node 2" € v, i.e., 2" € N(2"). If n(z}h) C
n(x?), then N(z%) is said to be an ancestor of N'(z%) which in turn is a descendant
of N(z!). If a NEC does not have an ancestor, we call it a root.

We note that for v = I'" a root is a vertex (i.e., a coarse node) in the case
of cuboid subdomains. However, often for unstructured domain decompositions
obtained, e.g., by METIS [29], a root can be a coarse edge or coarse face as well; see
further the discussion in [9]. We note that for special cases of structured domain
decompositions, e.g., a beam built from a union of cubes, the same can occur.

We now give a general description of the interface partition for RAGDSW for
an unstructured mesh and domain decomposition. We will define components &,
s.t. each £ contains only one root and parts of its descendants. Furthermore, we
will assure that the resulting interface partition P is nonoverlapping to obtain a

partition P of connected disjoint components £ € P s.t.

Fh — U é—

EepP

Several specific constructions are possible. Relevant aspects are, e.g., obtaining
components of similar size, nondegenerate components, and parallel efficiency of
the construction.

For the results in this paper, we have constructed the interface partition in the
following way: We initialize each component £ € P with the nodes of a root and
add the remaining nodes in an iterative process.

Starting with the roots, we grow sets which will result in all the subsets £ € P.
In each step of an iteration, we add all nodes which are adjacent to elements of
each of the current sets, which have not been previously assigned, and which are
descendants of the root of the set. We repeat this process until all interface nodes
have been assigned to a £ € P. Figure 3 depicts sample partitions for two and three
dimensions.

We note that for the unstructured meshes in section 14, the average number of
degrees of freedom per eigenvalue problem is increased by roughly 50% and with
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Fic. 3. Sample partitions in two dimensions (left) and three dimensions (right) for un-
structured domain decompositions. For the two-dimensional case, the interface is given by thick
black lines and the interface components £ € P by different markers. For the three-dimensional
case, coarse nodes are indicated by white spheres; interface components are shown in different
colors. For a clearer visualization, only those finite element faces are shown, whose nodes are all
contained in the respective interface component. Thus, gaps indicate finite element faces, whose
nodes are part of several interface components.

the maximum roughly doubled, compared to the face eigenvalue problems used in
the standard AGDSW.

As before, we partition each interface component into its subcomponents. Let
Nrn be the set of NECs of I'* and for £ € P let

Ne:={&nNc:ceNpn A ENe# D}

Let ng := |N¢| be the number of NECs of £ and let &, ¢ = 1,...,n¢, be the
resulting decomposition of € into {&;}15, = M. We then have &N & = 0 (i # j)
and § = U:Li1 i

Remark 8.1. If our problem satisfies a Neumann boundary condition on 0y C
0f), in addition to a nonempty set 0Qp = 902 \ 90y with a Dirichlet boundary
condition, then the construction of the RAGDSW coarse space and the proof of the
condition number estimate in sections 10 and 11 will essentially be the same. The

finite element nodes that lie on the Neumann boundary but not on the interface
['=,;; (092; N 0%Q;) \ 0Qp are treated as interior nodes.

In the next section, we will first describe the adaptive GDSW coarse spaces in
variational form. Thereafter, we will derive a condition number estimate for the
preconditioned two-level additive Schwarz operator based on the coarse space in-
troduced above. We note that the proof remains valid for quite general interface
partitions P and is not restriced to the one of RAGDSW.

9. Variational description of adaptive GDSW-type coarse spaces. For
¢ € P the index set n® contains the indices of all adjacent subdomains, i.e., the
union of the index sets of all nodes z" € €,

(9.1) né = U n(zh).

zheg

As in section 5, ﬁg is the closure of the union of adjacent subdomains, i.e., ﬁg =
Ui€n§ QL _ _
Let G C Q be any union of sets s € {T; NT; # 0 :T;,T; € ,}. By zesa(+), we
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® node of &
O node of Q¢ \ &

Fic. 4. Graphical representation in two dimensions of the energy-minimal extension (9.3)
from € € P to Q¢ (left) and sample energy-minimal extension for the diffusion equation (right)
in which the RAGDSW interface component & is highlighted in red and the remaining interface
nodes in light gray.

denote an extension-by-zero operator from £ C G to G:

zesa t XM(€) = {wlg:w e VM(Q),w=0in Q\ ¢}

h h
v 2e56(v) = { g(x ) :ih E%\f.

Here, X"(¢) := {v: £ — R3}.

By Hes(+), we denote a possibly nonunique (cf. Remark 9.1) energy-minimal
extension w.r.t. ag, (-,-) from & to Qe¢: let Vo}fg(Qg) ={wlg, : w e VHQ),w(z") =
0 Va" € ¢}, then for e € X"(£), an extension ve := Heso, (7¢) € V() is given
by a solution of

(9.2)

ag, (ve,v) =0 Vv € Vi'e(Qe),

9.3
©:3) ve(2") = e (ah) Wzl e g
cf. Figure 4. We note that the extension is computed with a homogeneous Neumann
boundary condition on 9€.

As in section 8, let {&;}5, be the set of all NECs of a £ € P. Then & N¢E; =0
(i #7) and € = U5, & holds. We define the symmetric, positive definite bilinear
form

(9.4) ce(u,v) == Zc& (u,v) Yu,v e X"(¢),
i=1
with
(9.5) ce (u,v) = aqy, <Z§,-->Q§i (u), 20, (U)) Vu,v € Xh(é)

The corresponding norm is defined by
2 . h
(9.6) [ullz, = ce(u,u) Vue X*(€).

We define the following generalized eigenvalue problem on { € P: Find 7. ¢ € X k(&)
such that

(9.7) aq, (’Hg_>Q5 (T*’g), ’H§_>Q£ (9)) = )\*,565(7'*75, 9) Vo € Xh (f) .
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The eigenvalues are again sorted in nondescending order; ie., Aj¢ < Age < ... <
Am,¢ and the eigenmodes accordingly, where m = dim (X h (f)) Furthermore, let
the eigenmodes 7. ¢ satisfy ce(Twe, 7j¢) = Ok;, where d0y; is the Kronecker delta
symbol. We select all eigenmodes 7. ¢ where the eigenvalues are below a certain
threshold, i.e., A, ¢ < tole. Then, the coarse basis functions corresponding to £ are
the extensions

(98) Vg ¢ 1= Hroa (Tp) S Voh(Q), T = ZE»F(T*@)’

of the selected 7, ¢, where v, ¢ = Hrso(rr) is given by the solution v, ¢ € VJ*(Q)
that satisfies

ag, (Vse,w) =0 Vw e Vg (),1=1,...,N,

9.9
(©:9) Ve g(2") = p(2") Va2l e
We note that, contrary to (9.7), v, ¢ vanishes on 08¢ since 70 = z¢,r (74 ¢) and since
Ve = Hrsa () € VI (Q). Therefore, (9.9) has a unique solution.

For a general interface partition P, we define the adaptive GDSW coarse space
as

(9.10) Vp = @span {’Uk@ ke < tOl&}.
£epP

The standard AGDSW coarse space (see [21]) is based on the partition
P:=FUEUV.

Since vertices, edges, and faces are NECs, we then have

ce(u,v) = ag, (2650, (1), zes0, (v))

if £ is a vertex, an edge, or a face.

Remark 9.1. For the diffusion case the energy-minimal extension defined by
(9.3) has a unique solution. If an interface component ¢ is a straight edge or a vertex
then 1 or 3 rotations, respectively, are in the null space of the extension operator
for linear elasticity. However, as all solutions of (9.3) have the same energy, the
choice of the particular solution does not influence the solution of the generalized
eigenvalue problem (9.7): let v, ¢ = Hesa, (e ) be a solution of (9.3). Then all
solutions are given by v, ¢ + r, where r € range (’H@QE (0)); for linear elasticity r
is a rigid body mode. Since r € Vo}fg(Qg), we have ag, (r, Hesq,(0)) = 0 by the
definition of He,q, (#). Therefore, v, ¢ + 7 solves (9.3) and

agq, (’U*’g + 7, 7‘[5495 (9)) = aq, (U*’g,Hgﬂgf (6)) Vo e X" (5) .

As a consequence, any operator defined by (9.3) yields the same generalized eigen-
value problem (9.7). In section 13, we will provide some remarks on how to find
the solution of (9.3) when it is not unique.

Remark 9.2. We note that the left hand side of eigenvalue problem (9.7) is
singular and its kernel contains the constant functions for the scalar diffusion case
and the rigid body modes for linear elasticity. Therefore, the null space has a
dimension of 1 for the scalar diffusion problem and at least 3 for linear elasticity.
For a vertex (i.e., £ = v € V) the problem has only one (scalar diffusion) and three
(linear elasticity) degrees of freedom. Thus, in the latter case, the solution is given
by the vertex basis functions of the GDSW coarse space, i.e., the three translations
in case of linear elasticity; cf. [21] and [7].
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10. Spectral projections. We will now consider the projections

(101) pr = Z ng, Hg’w = Z Cg(w, ’Ukyg)vk@
Eepr )\k,EStOZé

onto the space Vp. Here, vy ¢ are the energy-minimal extensions of the eigenfunc-
tions determined by (9.8) and Ay ¢ the corresponding eigenvalues from (9.7). For
€€ P, let de: X"(€) x X"(€) — R be the symmetric, positive semidefinite bilinear
form

(10.2) dg (- ) = age (Hesae (+), Hesae (4))-
For any union B C Q of finite elements T’ € 74, let

(10.3) vlop) = Vas(v,v) Yve Vh(Q).
We find that
2
(10.4) [0l = de(v,0) = [Hesae (v)] 0,y < 02, YveVh(9),

due to the energy-minimal property of the extension operator.

Using standard arguments of spectral teory, we obtain two important properties
of the projection Il¢, required for the proof of the condition number estimate in
section 11; cf., e.g., [21, Lemma 5.3] and [20, Lemma 4.1].

, . dim (X" (€))

LEMMA 10.1. Let the eigenpairs {(Tr,e, Ak,e) }req from (9.7) be chosen
such that ce(Ti ¢, Tje) = Ok; and such that the eigenpairs are sorted in nondescending
order w.r.t. the eigenvalues. Then the operator ll¢ defines a projection which is
orthogonal with respect to the bilinear form de(-,-) and therefore

2 2 2
[ulg, = Meuly, + Ju—Tleuly, . Vue X"(9).
In addition, we have, from spectral theory,

1
2 2
lu = eull,, < fole |u —euly, .

The following lemma follows directly from Lemma 10.1; cf. [21, Lemma 2].

LEMMA 10.2. For £ € P and u € V*(Q) it holds that

1

2 2

lu = Teull,, < Tole Z lulagay) -
kent

Proof. We have

2 Lemma 10.1 ] 2 1 2
u— Ieu < — |u—TIeu|, < —|u
|| 3 Hc5 — tOlg | 3 |d5 — tolg | |d5

(10.4)

1 2 1 2
< o lulaeg = o D lulae,) -
£ ¢ keng
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11. Convergence analysis. To prove a condition number estimate, we will
prove the existence of a stable decomposition; cf. [43, Chapter 2]. We therefore
define the coarse interpolation Iy := IIp as the projection onto the coarse space
Vo := Vp; cf. (9.10) and (10.1). Thus the coarse component of the stable decompo-
sition is defined as

ug = Iou := Ilpu.

LEMMA 11.1. For £ € P and u € V*(Q), we have

1
lu — o2, = ce(u — o, u — ug) < ol > lulaen

kené
Proof. We have

23
lu—uollZ, = D lzesa., (u—pu)l3q,
=1
neg
= ) lzoa, (u—ew)iq, )
=1
= flu— w2,

Lemma 10.2 ]
<

Next, we derive an estimate for the energy of the coarse component.
LEMMA 11.2. It holds that
C,N¢ 9
|U0|a(9) < 2|u‘a(ﬂ) + Z Z |U|a(9k) ( t;l > ula(a);
P eeP kens P
where C; is the mazimum number of vertices of any element T € 1,(Q), and

(11.1) N := max [P(Q)], PQ;):={cP:£nQ; #0}

1<i<N

is the maximum number of interface components €& € P of any subdomain, and
tolp := mingep tolg.

Proof. We can use the fact that ug is energy-minimal w.r.t. |-[, o for each
subdomain Q;, i.e., ug = Hrsq(up), and obtain
|uo |2y < 2[Hrsa(W)[2 ) + 2/ Hrsa(u — uo) 2 q)
< 20ul? ) + 2|zraa(u — uo)|%q)-
Let
(11.2) Neep = | J{&i=1,...,n¢}
£epP

be the set of interface components of the £ € P partitioned into their nodal equiv-
alence classes &, i = 1,...,n¢e. Then, § NE; = 0 for i # j, and Ué,-,e/\fec L& = rt,
and ’

lzrs0(u — U0)|§(Q) = | Z zga(u — U0)|z(sz)
Ei€Nee, P

= Z | Z ze50(u — uo) %)

TeTh () &i€Nee, P
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197  There can be at most C; NECs ; that are nonzero in any element T. Thus, we
198 have using the Cauchy—-Schwarz inequality

199 Z | Z ZfﬁQ(u_uo)ﬁ(T)S Z Cr Z ‘Zfﬁﬂ(u_uo)ﬁ(T)

TeEm(Q) &ENee,p TeTh() &i€Nee,p
500 =Cr Y |zsalu— uo)la,)
&i€Nee,p
501 =C Y llu—uoll2,
ceP
o < C‘r 2
502 hS Z Z \U|a(nk)v
tolp
503 £€P kens

504 where in the last step we have used Lemma 11.1. Thus,

C; C,N¢
505 luola ) < 2lulfq) + 2% Yo lulig, <2 (1 T Solm ) lul?0)-
EEP kené

506 |

07 In Theorem 11.4, we will derive estimates based on the product of u — wug
08 and a partition of unity function 6; associated with each subdomain. We employ an
09 overlapping decomposition { Qz}fil with overlap h by extending the nonoverlapping
0 decomposition {€2;}¥ | by one layer of finite elements. The estimates are carried
| out separately on €; \ ©; and Q;: the former locally and the latter globally. The
2 following lemma covers both cases.

513 LEMMA 11.3. Letl € {0,1,...,N} and B =\ Q, if 1 >0, and B = Qy :=Q
514 for 1 = 0. Furthermore, let ¥ : B — R s.t. W|¢, is constant on & € Neep, & C B,
515 e, W(zh) = C; for all 2" € &. Additionally, we assume that 0 < ¥ < 1 and
516 W(z") =0 for 2" ¢ TN B. Then,

=1~ h 2 CT 2
517 ‘I (\Il . (U - UO))’a(B) S % § E |U"a(Qk) ’
£eP() kens

518 where I"(-) is the pointwise interpolation operator of the finite element space V" (€2).

519 Proof. We define the set Neep(€) := {& € Neep 1 & N # 0} of NECs that
520 are part of or touch €. Given that P(Qp) = P, it is Neep(Q0) = Nee,p. Since
521 zg¢,5p(-) acts as an identity operator on &;, we have

o 2

522 [ - (u = uo))| :‘ >, Feen(¥-(u=uo) (B)
Ei€Nee, P (S2) ¢
2

523 - ¥ \ ST (Y- (u—ug)) .
594 TETh(B) 5i€Nec,77(Ql) ¢
525 There can be at most C; NECs ; that are nonzero in any element 7. Thus, we
526  have using the Cauchy—Schwarz inequality

2 2
| Y e ww))| <O 3 s )|
528 Ei€ENee, P (0) ¢ &i€Nee, P ()

529 and consequently
5 2
o350 7MW - (u - u0))|qs)y < Cr ) ‘25”% (& (u = uo)) a(Q;)
i

531 Ei€Nee,p(S2)
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Since 0 < ¥ < 1 is constant on a NEC &; € M. p(), we have

2

a(0e) 2.

Ei€Nee, (1)

S Jreen (¥ (=)

Ei€Nee, P (1)

< Z ’Zﬁﬁﬂsi (u = uo)

& €N, P(Ql)

EEP(QI =1

2
gi)2‘zgﬁg’5i (u — ugp) o(5,)
2
a(f2,)
2
oo (1= o]

= Z ce(u — ug, u — up).

EEP (1)

Using Lemma 11.1, we obtain

C- Z ce(u —ug, u — up) _tolp Z

EEP () EEP(Y) kent

Thus, in total, we have

1wy < i > S ey

EEP() kens

Now, we are able to prove the existence of a stable decomposition.

THEOREM 11.4 (Stable Decomposition). For each u € V" (), there exists a

N
decomposition u =Y RIu;, u; € V; = V"(Q), where Qf) := Q, such that

=0

N
2 2
> il ya < G5 luly »

=0

where C3 = (14 + (12N¢ +C) t(jfp) and

N
(11.3) C:=C({Qu}L,, P) = @fggv; {¢eP:
=

i,j €n}.

C is a measure for the P-connectivity of the domain decomposition: Two subdomains

i, ] are connected, if they touch the same interface compon

enté € P, i.e., ifi,j € nt.

Proof. On the overlapping decomposition {€; MY of width h, we consider the

local components u; := I" (6; - (u — ug)) with the partition of unity {01}1:17 ;

{a" € O} — R, where

1 e h -,
@m%::{nuwl if2® €,

0 elsewhere,

where 2"

z" is contained in.

is a finite element node and |n(x")| is the number of subdomains the node

We note that, in general, {Q;}X, differs from the decomposition {2}~ used
in the first level of the preconditioner, in which an overlap with one or more layers

of finite elements is used. The decomposition {Q;}Y

is only used in the proof
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and, since Q. C Q; we have u; € V;. Thus, no restriction is placed on the size of
the overlap of {Q:}~ ;. The condition number estimate in Corollary 11.5 does not
reflect the fact that the rate of convergence of the algorithm often improves when
the overlap is increased.

We define the cutoff function 0 : {z" € Q} — [0,1] s.t.

1 _
O(z") =1 — for any node z" € Q.
n(z")]
Then, we have
|ui|3(ﬂ’ |ul|a(Q |Ih(6i(u - UO))E(QI.)

= [1"(0s(u — o)) 2,y + 11" (Bi(u — Uo))ﬁ(gi\gi)

< 21M(1 — 0,)(u — w0)) gy + 2t — w0l + 101~ w0)) 2

< 2|Ih(9(u — )| a() T 4|U\ @)t 4|u0| @)t \Ih( i(u— UO))|2(Qi\Qi)-
As 6 is only nonzero on I'"| it follows from Lemma 11.3 that

N
Z2Uh(9(u - uO))'Z(Qi) = 2|Ih(9(u - uO))'i(Q)
i=1

- tO G(Qk
EEP keng
C,.N¢ 9
(11.4) < 2W|U\a(n)~

Similarly, we have

h
11 5 Z'I u Uo )|a(Q \Q) tOlp Z Z Z |u| Qk) = t l |u|a(Q) .

1=1 £eP(;) kent

Thus, using (11.4), (11.5), and Lemma 11.2, we obtain

N N

2 _ 2 2
Z; |Ui|a(9;) = [uolyq) + Z; |Uz|a(g
1= 1=

C,
< 5luold ) + 4uliio) + 2

N C.C.
| |a(Q "‘@\UE(Q)

) |u|a(Q)
c,

From Theorem 11.4, we directly obtain a condition number estimate for the pre-
conditioned system.

COROLLARY 11.5. The condition number of the RAGDSW two-level Schwarz
operator in three dimensions is bounded by

C.N¢ Cr
<52 (1 + > Jul? () + (4+ (2N +0)
tOlp

_ o\ /o
% (Mpaapswk) < (14 + (12N + C)tolp) (Nc + 1) ,

where N, is an upper bound for the number of overlapping subdomains {QU}N | any
point " € Q can belong to. All constants are independent of H, h, and the contrast
of Young’s modulus E.
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Proof. Since we use exact local solvers, we directly obtain
K (Mpacpswk) < Co (Nc + 1) )

where CF is the constant of the stable decomposition; cf. [43, Lemma 3.11] and
the follow-up discussion and the proof of [11, Theorem 4.1]. We obtain the final
estimate using Theorem 11.4. 0

12. A variant using local Neumann problems. We will now describe a
technique that can significantly speed up the algorithm in a parallel setting and
greatly facilitate its implementation.

We first consider the case of an interface component which is a coarse face f.
The energy-minimal extension used in the generalized eigenvalue problem (9.7) is
only weakly coupled between the two subdomains via the nodes adjacent to the
face, i.e. (Fh NQ; ﬂﬁj) \ f contains relatively few nodes on certain coarse edges
and at certain coarse nodes. Instead of computing this coupled extension H.q, ()
from the face f to the two adjacent subdomains as in (9.3), we can compute the
extensions to each subdomain €2;,(}; separately. We expect that little information
will be lost. We find that

aq, (’HE*QE (9)7 Héﬁﬂg (0)) > Z aqy, (HﬁﬂQk (9)7 Hfﬂﬁk (9)) s

kent

for § € X" (¢). Since the subdomains are only weakly coupled via these adjacent
nodes of the face, we expect only a small change if we replace the left hand side
of (9.7) using this alternative extension and that the dimension of the coarse space
will increase only slightly.

The same technique can be applied to arbitrary interface components £ € P.
We might expect that the coupling will be stronger between subdomains for smaller
interface components but our numerical results in section 14 suggest that the in-
crease in the coarse space dimension is moderate in all cases considered.

We indicate that this technique is employed by adding a trailing S to the coarse
space name: V,apsw_g and Viaapsw_g- Using this modification yields the same
condition number bound as in Corollary 11.5, since the modified de(-, -),clf(~7 s
satisfies the same inequality as in (10.4):

2 2 2
|v|3§3 = df(v,v) = Z |H£»Qk(v)|a(9k) < Z |U‘a(Qk) = |’U|a(Q£) Vv € Vh(Q)-
kent kené

Let the local (nonoverlapping) stiffness matrices with a Neumann boundary for
the corresponding bilinear forms agq,(-,-) be given by K % For each & € P, we
partition the degrees of freedom of €2; into those in £ N {2; and the remaining ones,

R. We have
KQi _ KRR KR£
S\ K% KL
ER 33

Let Rgﬂk map the degrees of freedom of £ N QY to £. We define

S . T k
See =Y Rlq Sk,

kens

with the Schur complements

+
k ._ Q Q Q Q
Sk= K — K& (KR;) KR, kent,
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+
where (Kﬁ}%) is a pseudoinverse of Kgﬁ, cf. Remark 9.1 and section 13. Using the

definition of K ¢¢ from (7.2), we obtain the modified generalized eigenvalue problem
given in matrix form by

< N
SeeTue = Mg KeeTue.

13. Remarks on the computation of the energy-minimal extension.
For an interface component & € P, the energy-minimal extension (9.3) satisfies
a homogeneous Neumann boundary condition on 9€Q¢ \ {. Therefore, for linear
elasticity, if £ consists only of a single node or if it is given by a straight edge,
then all three rotations or the rotation around the edge are in the null space of
the problem; cf. Remark 9.1. Thus, in such cases, the operator He,q, () defined
by (9.3) is symmetric and only positive semidefinite.

We also note that if the variant described in section 12 is used, the extension
operators are even more likely to be only positive semidefinite, since the extension
is defined on the sets £ N Qy,, k € né.

In an implementation, we have several options. Theoretically, we could compute
a full pseudoinverse, however, this is very expensive in terms of processor time and
memory. As an algebraic alternative, a pivoted factorization can be computed such
that the diagonal is rank revealing. Alternatively, we can add a small regularization
term £ R to obtain a symmetric, positive definite problem; e.g., e R = 10713 K gjag,
where Kgiag is the diagonal of the respective matrix.

We have also considered two further, geometric approaches. One approach is to
remove the null space by a projection. For this, we need to determine a basis of the
null space, i.e., compute the rotations which requires geometric information. This
approach has another downside, if we want to use a direct solver on the resulting
system, since transforming the system is quite expensive and the transformed system
is generally more dense.

A second geometric approach is less algebraic and eliminates a subset of the
degrees of freedom of the matrix H corresponding to Hes,(-) at the expense of
solving a small Schur complement system using a pseudoinverse. At best, this
amounts to prescribing a zero Dirichlet boundary condition on some additional
degrees of freedom. We partition the matrix H w.r.t. £ and the remaining degrees
of freedom R. To evaluate Heq, () requires the application of Hg}{. However,
if £ is a straight edge or a vertex, the submatrix Hrr has a null space of 1 or 3
rotations.

In general, we pick as least as many degrees of freedom D C R as the dimension
of the null space of Hrr . Let the remaining degrees of freedom be denoted by
R C R. The matrix Hgp is partitioned by R and D s.t.

.. - (Her Hep
T \Hpp Hpp)

The variables R are then eliminated to obtain a Schur complement system

Hipr Hip _
( 0 SD:D v Spp=Hpp—Hpply zHp p-

If D was chosen properly, the submatrix H AR 18 invertible. For example, if £ is a

straight edge and D corresponds to a node which does not lie on the same straight
as the edge (note that three degrees of freedom are associated with each node), then
Hyp, f is invertible. In that case, the Schur complement is well defined and has a
null space of the same dimension as Hrr. Thus, we can solve the corresponding
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Fic. 5. Cross section (left) of a domain decomposition of a cube and a discontinuous
coefficient function E with beams of large coefficients (light blue) crossing the domain. The beams
of large coefficients do mot touch the domain boundary. The light blue color corresponds to a
coefficient of Emax = 108 and the remainder is set to Eni, = 1.0. Number of subdomains:
125; number of nodes: 132651 (degrees of freedom: 397953); average degrees of freedom per
overlapping subdomain: 6198; overlap: two layers of finite elements. Structured tetrahedral
mesh; unstructured domain decomposition (METIS). For the corresponding results, see Table 2.
Taken from [21, Figure 8].

system using a pseudoinverse. This is much cheaper than using a pseudoinverse on
Kgp, since S H.p s of a much smaller dimension than Kgrpg.

If we select the degrees of freedom in D carefully, the Schur complement will
be identically zero, i.e., evaluating Hesq, (-) is no more expensive than solving a
linear system with K 5 and the cost will be comparable to that of a case with an
invertible Kgrg.

14. Numerical results. In this section, we present numerical results to com-
pare the nonadaptive coarse spaces GDSW and RGDSW, the adaptive coarse spaces
AGDSW (section 5) and RAGDSW (section 8), and their S-variants AGDSW-S and
RAGDSW-S; cf. section 12.

We show numerical results for a discretization of problem (2.1) with a Pois-
son ratio v = 0.4, the right hand side f = (1,1,1)7, and several coefficient func-
tions given by different choices of the Young modulus function E(-). The small-
est Young modulus Ei, := min__g E(z) is always set to 1 and the maximum
Frnax = max, g F (x) is specified in the respective figure and table caption. Ex-
cept for the test case of Figure 6 and Table 3, the computational domain is the unit
cube with a zero Dirichlet condition prescribed on all its boundary.

We use piecewise linear basis functions on tetrahedra and we solve the resulting
linear system with the preconditioned conjugate gradient (PCG) method and a
relative stopping criterion of [|r(*)||y/[r(® |y < 1078, where 7(®) and *) are the
initial and the kth unpreconditioned residuals. The reported condition numbers
are the estimates obtained after the last iteration of the PCG method using the
Lanczos method [39, Chapter 6.7.3]. We partition the domain into subdomains
using METIS [29]. In all experiments, we use an overlap of two layers of finite
elements; see section 3 for the definition of the overlap.

The coefficient function of the first test problem is depicted in Figure 5; the
corresponding results are given in Table 2. Experiments with both nonadaptive
coarse spaces GDSW and RGDSW failed to converge in 2000 iterations, clearly
showing that adaptivity is required to obtain a robust preconditioner. By using
the adaptive coarse spaces, we obtain acceptable condition numbers and iteration
counts. The results show a significant reduction in the coarse space dimension for the
RAGDSW variant compared to AGDSW. For example (tol = 0.05), the dimension
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TABLE 2
Results for the coefficient function in Figure 5: iteration counts, condition numbers, and
resulting coarse space dimension for different coarse spaces. Number of subdomains: 125; degrees
of freedom: 897953; overlap: two layers of finite elements; mazimum coefficient Emax = 10°;
relative stopping criterion |lr®)||a/||r@ |2 < 1078, Structured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coefficient function E from Figure 5

Vo tol it. K dimVy (V/P, € , F ) dimVo/dof
Vepsw — >2000 3.1-10° 9996 (1707,4618, 3671) 2.51%
VRGDSW — >2000 3.9-10° 3358 (3358, 0, 0) 0.84%
Viapsw 0.100 71 41.1 14439 (1707, 4943, 7789) 3.63%
Vacpsw 0.050 90 59.5 13945 (1707, 4915, 7323) 3.50%

AGDSW 0.010 132 161.1 13763 (1707, 4912, 7144) 3.46%

AGDSW 0.001 327 971.8 13721 (1707, 4907, 7107) 3.45%
VAGDSW—S 0.100 63 28.7 14597 (1707, 5020, 7870) 3.67%
Vacapsw_s 0.050 89 57.5 14004 (1707, 4949, 7348) 3.52%
Viepsw_s 0.010 134 166.0 13767 (1707, 4914, 7146) 3.46%
VaGDSW_s 0.001 305 973.1 13729 (1707, 4911, 7111) 3.45%
Ve AGDSw 0.100 67 346 8249 (8249, 0, 0) 2.07%
VRAGDSW 0.050 88 61.3 7683 (7683, 0, 0) 1.93%
VRAGDSW 0.010 114 117.;1 7501 (7501, 0, 0) 1.88%
VeaaDsw 0.001 383 1.4-10 7401 (7401, 0, 0) 1.86%
Vracpsw_s | 0-100 62 32.7 8799 (8799, 0, 0) 2.21%
Veacpsw_s | 0.050 79 51.4 7903 (7903, 0, 0) 1.99%
Veacpsw_sg | 0.010 109 104.5 7563 (7563, 0, 0) 1.90%
Vracpsw_s | 0-001 268 902.7 7525 (7525, 0, 0) 1.89%

FIG. 6. (left) Discontinuous coefficient function E with coefficient layers of E = 10° in light
gray and an inclusion at the top right with E = 109 in dark grey. The remainder of the coefficient
in white is set to Eyin = 1.0. (center) Boundary partition for Dirichlet (blue) and Neumann
(orange) boundary. (right) Domain decomposition of 50 subdomains. Number of nodes: 56 053
(degrees of freedom: 168159); average degrees of freedom per overlapping subdomain: 5632.2;
overlap: two layers of finite elements. Unstructured tetrahedral mesh; unstructured domain
decomposition (METIS). For the corresponding results, see Table 3. Taken from [21, Figure 9].

of Vaapsw_g is reduced by 43.6% by using Vi aapsw_s- And even while GDSW
does not converge in 2000 iterations, its coarse space is 26.5% larger than that of
RAGDSW-S (tol = 0.05).

For the next example, we consider a problem, for which we impose a Neu-
mann boundary condition on most of the domain boundary; see Figure 6. The
results in Table 3 show an even larger reduction in the coarse space dimension from
AGDSW to RAGDSW compared to the previous case. We obtain a reduction of
69.4% (tol = 0.05). The reason for this is the larger number of interface com-
ponents: Since the AGDSW space contains the GDSW space and the RAGDSW
space contains the RGDSW space, a significant part of the coarse space reduc-
tion can be attributed to the smaller dimension of RGDSW compared to GDSW.
This highlights the core idea behind the reduced dimension GDSW spaces in [9];
the explanation is supported by the fact that the dimension of Vi sqpgw is fairly
close to that of VRapsw. Therefore, since the coefficient function contains only
relatively few connected large coefficient components, only a few additional coarse
basis functions are required.
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TABLE 3
Results for the coefficient function in Figure 6: iteration counts, condition numbers, and
resulting coarse space dimension for different coarse spaces. Number of subdomains: 50; degrees
of freedom: 168159; overlap: two layers of finite elements; mazimum coefficient Emax = 109;
relative stopping criterion |r®)||o/||r(O |2 < 1078, Unstructured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coeflicient function F from Figure 6
Vo tol it. K dimVp (V/P, € , F ) dimVo/dot
Vepsw — 1329 1.5-107 2319 ( 291, 1000, 1028) 1.38%
VRGDSW — 1549 1.0-107 572 ( 572, 0, 0) 0.34%
Viapsw 0.100 60 20.2 2732 ( 291, 1058, 1383) 1.62%
Vacpsw 0.050 69 28.1 2631 ( 291, 1058, 1282) 1.56%
Vacnsw 0.010 71 282 2626 ( 291, 1058, 1277) 1.56%
Vacepsw 0.001 152 1162.2 2613 ( 291, 1052, 1270) 1.55%
VaceDsw-_s 0.100 58 18.9 2741 ( 291, 1059, 1391) 1.63%
Vaicepsw_s 0.050 69 28.1 2631 ( 291, 1058, 1282) 1.56%
Viepsw_s 0.010 72 28.2 2626 ( 291, 1058, 1277) 1.56%
VacDsSW-_s 0.001 142 733.7 2614 ( 291, 1053, 1270) 1.55%
VeacDsw 0.100 68 27.1 988 ( 988, 0, 0) 0.59%
VRAaGDSW 0.050 85 43.8 804 ( 804, 0, 0) 0.48%
VRAGDSW 0.010 100 88.5 781 ( 781, 0, 0) 0.46%
VeacDsw 0.001 183 769.1 774 (774, 0, 0) 0.46%
Vragpsw_g | 0-100 60 20.7 1152 (1152, 0, 0) 0.69%
Veacpsw_g | 0-050 78 35.2 868 ( 868, 0, 0) 0.52%
Veacpsw_sg | 0.010 100 87.6 790 ( 790, 0, 0) 0.47%
Vragpsw_g | 0-001 115 141.1 786 ( 786, 0, 0) 0.47%

F1c. 7. Partial visualization of an unstructured tetrahedral mesh consisting of several discon-
nected components of foam-like structures. On the corresponding mesh of a cube, foam corresponds
to a large coefficient of Emax = 10% with Ewyi, = 1.0 elsewhere. The large coefficient does not
touch the domain boundary. Number of subdomains: 100; number of nodes: 588958 (degrees of
freedom: 1766874); average degrees of freedom per overlapping subdomain: 19969.2; overlap:
two layers of finite elements. Unstructured tetrahedral mesh; unstructured domain decomposition
(METIS). For the corresponding results, see Table 4. Taken from [21, Figure 10].

We consider another realistic geometry in Figure 7 with a foamlike structure.
We note that the foam is not a single connected structure but consists of several
smaller disconnected foamlike structures. The results in Table 4 are similar to the
previous ones. By using RAGDSW-S, we obtain a coarse space reduction of 49.9%
compared to AGDSW-S (tol = 0.05). However, here, the dimension of Vi apsw_s
is more than double that of Vrapsw indicating that Vi apsw_g is adaptively
enriched with quite a few additional basis functions compared to VrRapsw -

We conclude with averaged results for 100 random coefficient functions showing
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TABLE 4
Results for the coefficient function in Figure 7: iteration counts, condition numbers, and
resulting coarse space dimension for different coarse spaces. Number of subdomains: 100; degrees
of freedom: 1766 874; overlap: two layers of finite elements; mazimum coefficient Emax = 10°;
relative stopping criterion |r®)||o/||rO |2 < 1078, Unstructured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coefficient function E from Figure 7
Vo tol it. K dimVy (V/P, € , F ) dimVo/dof
Vepsw — 1865 1.1-10° 8311 (1167, 4108, 3036) 0.47%
VRGDSW — 1613  9.3-10° 2313 (2313, 0, 0) 0.13%
Viapsw 0.10 52 21.4 12367 (1167, 4358, 6842) 0.70%
Vacpsw 0.05 68 43.8 10940 (1167, 4351, 5422) 0.62%
Viapsw 0.01 167 333.4 10304 (1167, 4324, 4813) 0.58%
VaaDsw_s 0.10 50 18.7 12539 (1167, 4389, 6983) 0.71%
VaGDSW_s 0.05 63 32.2 11005 (1167, 4362, 5476) 0.62%
VaGDsSw_s 0.01 147 158.1 10320 (1167, 4338, 4815) 0.58%
VeAaaDsW 0.10 54 22.0 6641 (6641, 0, 0) 0.38%
VRAGDSW 0.05 80 45.2 4868 (4868, 0, 0) 0.28%
VeAaGDSW 0.01 189 280.2 4019 (4019, 0, 0) 0.23%
Veagpsw_g | 0-10 50 18.4 7833 (7833, 0, 0) 0.44%
Viagpsw_s | 0.05 69 46.1 5519 (5519, 0, 0) 0.31%
Vracpsw_s | 0.01 151 202.6 4152 (4152, 0, 0) 0.23%

TABLE 5

Averaged results for 100 random coefficient functions (average large coefficient density:
11.08%): tolerance for the selection of the eigenfunctions, iteration counts, condition numbers,
and resulting coarse space dimension for different coarse spaces; maximum in brackets. Number
of subdomains: 512; number of nodes: 452522 (degrees of freedom: 1357566); average degrees
of freedom per overlapping subdomain: 5906.4; overlap: two layers of finite elements; mazimum
coefficient Emax = 10°; relative stopping criterion ||r() ||z /|70 ||z < 1078, Unstructured tetrahe-
dral mesh; unstructured domain decomposition (METIS). Voapsw and VrRgpsw never converged
in 2000 iterations.

Random coefficient function E
Vo tol it. K dim Vg dim Vo /dof

VGepsw —  >2000 ) 2.1-10° (3.2-10°) 49862.0 (49862) 3.7% (3.7%)
VRGDSW —  >2000 ) 2.4-10° (3.7-10°) 17778.0 (17778) 1.3% (1.3%)
VAGDSW 0.10 84.8 ( 93) 56.2 ( 80.7) 69006.7 (69892) 5.1% (5.1%)
0.05 106.3 (118) 92.1 ( 145.2) 66482.5 (67273) 4.9% (5.0%)
0.01  180.8 (228)  293.3 ( 662.9) 64508.1 (65235) 4.8% (4.8%)
Viapsw_s | 0-10 76.4 ( 84) 441 ( 54.2) 70570.8 (71632) 5.2% (5.3%)

(- )
(- )
( )
(1 )
(2 )
( )
0.05 993 (112)  77.9 ( 110.7) 67445.3 (68360) 5.0% (5.0%)
0.01 168.1 (195) 2475 ( 448.4) 65212.8 (66046) 4.8% (4.9%)
( )
( )
( )
(8 )
( )
( )

Veacpsw ] 010 895 (100)  60.9 ( 82.2) 39081.8 (39780) 2.9% (2.9%)
0.05 1151 (129) 104.8 ( 152.5) 35961.4 (36649) 2.6% (2.7%)
0.01  200.3 (232)  342.8 ( 523.6) 33370.8 (34058) 2.5% (2.5%)

0.10 749 ( 88) 428 ( 59.6) 44045.9 (44677) 3.2% (3.3%)

0.05 97.1 (112) 72.9 ( 103.5) 39076.9 (39730) 2.9% (2.9%)
0.01  167.8 (199) 244.7 ( 469.9) 35399.8 (36137) 2.6% (2.7%)

VRAGDSW*S

the robustness of the methods; cf. Table 5. Despite comparable number of iterations
and condition numbers, the coarse space dimensions of RAGDSW (-S) are smaller
by a factor of 1.6 compared to those of AGDSW(-S) (at an equal tolerance).
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