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ADAPTIVE GDSW COARSE SPACES OF REDUCED DIMENSION1
FOR OVERLAPPING SCHWARZ METHODS2

ALEXANDER HEINLEIN∗† , AXEL KLAWONN∗† , JASCHA KNEPPER∗, OLIVER3
RHEINBACH‡ , AND OLOF B. WIDLUND§4

Abstract. A new reduced dimension adaptive GDSW (Generalized Dryja-Smith-Widlund)5
overlapping Schwarz method for linear second-order elliptic problems in three dimensions is in-6
troduced. It is robust with respect to large contrasts of the coefficients of the partial differential7
equations. The condition number bound of the new method is shown to be independent of the co-8
efficient contrast and only dependent on a user-prescribed tolerance. The interface of the nonover-9
lapping domain decomposition is partitioned into nonoverlapping patches. The new coarse space is10
obtained by selecting a few eigenvectors of certain local eigenproblems which are defined on these11
patches. These eigenmodes are energy-minimally extended to the interior of the nonoverlapping12
subdomains and added to the coarse space. By using a new interface decomposition the reduced13
dimension adaptive GDSW overlapping Schwarz method usually has a smaller coarse space than14
existing GDSW and adaptive GDSW domain decomposition methods. A robust condition number15
estimate is proven for the new reduced dimension adaptive GDSW method which is also valid for16
existing adaptive GDSW methods. Numerical results for the equations of isotropic linear elasticity17
in three dimensions confirming the theoretical findings are presented.18

Key words. domain decomposition, multiscale, GDSW, overlapping Schwarz, adaptive coarse19
spaces, reduced dimension20
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1. Introduction. Successful domain decomposition preconditioners for solv-22
ing elliptic problems all require at least one global, coarse-level component in order23
to perform satisfactorily if the number of subdomains, into which the given domain24
has been decomposed, is relatively large. The design and analysis of these coarse25
components is central in most studies in this field given that they require global26
communication if the algorithms are implemented on distributed or parallel com-27
puting systems. In order to avoid creating a bottleneck, it is very important to keep28
the dimension of the related coarse space small.29

In recent years, substantial progress has been possible by the development of30
algorithms which adaptively design the coarse space at a cost of solving local gen-31
eralized eigenvalue problems. In this paper, we will focus on a particular family32
of domain decomposition algorithms, the two-level overlapping Schwarz methods,33
which use one coarse-level component in addition to local components each of which34
is defined on a subdomain which is part of an overlapping decomposition. We note35
that the use of adaptively designed coarse spaces has been very successful even with36
problems with very irregular coefficients; this is clearly demonstrated by examples37
in section 14 of this paper.38

The robustness of many coarse spaces for arbitrary coefficient functions is ob-39
tained by using local generalized eigenvalue problems to adaptively enrich the coarse40
spaces with suitable basis functions; see, e.g., [14, 10, 41, 15, 20, 13]. These ap-41
proaches differ, e.g., in the sizes of the eigenvalue problems, the coarse space di-42
mensions, the class of problems considered, and their parallel efficiency. We also43
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2 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

mention success with adaptive coarse spaces for nonoverlapping domain decompo-44
sition methods; see, e.g., [2, 34, 35, 42, 37, 31, 33, 38, 30, 32, 36].45

Two-level overlapping Schwarz algorithms were first developed with coarse spa-46
ces based on a coarse triangulation of the domain and with subdomains obtained47
by adding one or a few layers of fine elements to each coarse mesh element, see [43,48
Chapter 3]. On the other hand, the iterative substructuring algorithms, developed49
for decompositions of the domain into nonoverlapping subdomains, were immedi-50
ately available for quite irregular subdomains such as those that can be obtained by51
a mesh partioner such as METIS [29]; see [43, Chapter 4, 5, and 6]. The iterative52
substructuring algorithms have been very successful but they cannot be used unless53
submatrices associated with the subdomains are available instead of just a fully54
assembled stiffness matrix. This was a main reason why a new family of overlap-55
ping Schwarz algorithms was developed, known as the GDSW methods (generalized56
Dryja–Smith–Widlund), which borrow their coarse components from [43, Algorithm57
5.16]. These ideas were first developed in [5, 6]. The elements of these coarse spaces58
are defined by their values on the interface between the subdomains with values59
in the interiors defined by energy-minimizing extensions. These algorithms were60
further developed for almost incompressible elasticity in two papers [7, 8]; in the61
second paper the dimension of the coarse spaces was considerably decreased; see62
also [23, 16, 24, 25, 17, 22, 26] for further developments.63

In this paper, we present an approach of constructing adaptive coarse spaces64
for the two-level overlapping Schwarz method [40, 43] based on the adaptive GDSW65
(AGDSW) coarse space of [21]. In particular, our focus is on one new coarse space –66
the reduced dimension adaptive GDSW (RAGDSW) coarse space – and the reduc-67
tion of the coarse space dimension. A proof of a condition number estimate, which68
is independent of heterogeneities of the coefficient functions, is given in sections 1069
and 11. We note that this proof is based on a more general decomposition of the70
interface than the one in [21]; it applies to both, the original AGDSW and the new71
RAGDSW coarse space. Supporting numerical results are presented in section 14.72

In our adaptive algorithms, a user prescribed tolerance directly controls the73
condition number of the preconditioned operator and, if this tolerance is chosen as74
zero, adaptive GDSW is identical to GDSW and reduced dimension adaptive GDSW75
is identical to reduced dimension GDSW, the latter being a variant of GDSW defined76
on a specific interface partition of the domain decomposition; cf. section 8.77

We note that our reduced dimension GDSW coarse space differs from the re-78
duced dimension GDSW coarse spaces in [9]. However, they share the same core79
idea: GDSW and AGDSW use basis functions associated with coarse nodes, edges,80
and faces while the coarse spaces in [9], reduced dimension GDSW, and reduced81
dimension adaptive GDSW use basis functions associated only with subdomain82
vertices. Generally, this leads to a reduction in the coarse space dimension. See83
also [8, 4, 27, 18] for reduced dimension GDSW coarse spaces.84

We note that many other approaches to constructing coarse spaces exist. Some85
borrow the idea from the multiscale finite element method (MsFEM) [28, 12] and86
use basis functions of that type in the coarse space; c.f. [1, 3, 15, 20, 13]. However,87
the coarse spaces in this paper are not based on MsFEM functions.88

The outline of the paper is as follows: In section 2, we introduce our model89
problem followed by the definition of the two-level additive overlapping Schwarz90
methods in section 3. In the following five sections, we introduce four families of91
GDSW algorithms. In section 9, we give a quite general description of adaptive92
GDSW coarse spaces which covers both adaptive GDSW and reduced dimension93
adaptive GDSW; see also section 12 for a variant which is computationally cheaper,94
easier to implement and more efficient in a parallel implementation. In sections 1095
and 11, we derive a condition number estimate for our new reduced dimension96
adaptive GDSW preconditioner. In section 13, we address questions that may arise97
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Table 1
Reference table for some definitions used in this paper (in order of their appearance).

Description of coarse spaces (sections 4 – 8)
xh finite element node section 4
P nonoverlapping partition of the interface section 4
Ωξ union of the closure of the subdomains adjacent to a ξ ∈ P section 5
{ξi}

nξ

i=1 partitioning of a ξ ∈ P into nodal equivalence classes
structured mesh, structured domain decomposition eq. (7.1)
unstructured mesh, unstructured domain decomposition section 8

n(xh) index set of subdomains which contain xh eq. (8.1)
Theory (sections 9 – 11)

nξ index set of subdomains adjacent to a ξ ∈ P eq. (9.1)
zξ G(·) extension by zero from ξ to G eq. (9.2)
Xh(ξ) Xh(ξ) := {v : ξ → R3} section 9
Hξ Ωξ

(·) energy-minimal extension from ξ to Ωξ eq. (9.3)
cξ(u, v) cξ(u, v) :=

∑nξ

i=1 cξi (u, v) eq. (9.4)
cξi (u, v) cξi (u, v) := aΩξi

(zξi Ωξi
(u), zξi Ωξi

(v)) eq. (9.5)
‖u‖2cξ ‖u‖2cξ := cξ(u, u) eq. (9.6)
Πξw Πξ :=

∑
λk,ξ≤tolξ

cξ(w, vk,ξ)vk,ξ eq. (10.1)
ΠPw ΠPw :=

∑
ξ∈P Πξw eq. (10.1)

|u|dξ |u|dξ :=
√

dξ(u, u), dξ(·, ·) := aΩξ
(Hξ Ωξ

(·),Hξ Ωξ
(·)) eq. (10.2)

|u|a(B) |u|a(B) :=
√

aB(u, u) eq. (10.3)
Cτ max. number of vertices of a finite element Lemma 11.2
P(Ωi) ξ ∈ P adjacent to subdomain i eq. (11.1)
Nξ max. number of ξ ∈ P adjacent to a subdomain eq. (11.1)
tolP tolP := minξ∈P tolξ Lemma 11.2
Nec,P Nec,P :=

⋃
ξ∈P{ξi, i = 1, . . . , nξ} eq. (11.2)

C measure for the P-connectivity of the domain decomposition eq. (11.3)

about the implementation due to the encounter of singular matrices for certain ex-98
tension operators described in section 9. Finally, in section 14, we present numerical99
results for a selection of coefficient functions.100

For the reader’s convenience, an overview of some definitions is given in Table 1.101
102

2. Linear elasticity. We will consider a variational formulation of the equa-103
tions of compressible linear elasticity: Find u ∈

(
H1

0 (Ω)
)3 such that104

(2.1) aΩ (u, v) = L(v) ∀v ∈
(
H1

0 (Ω)
)3
,105

where Ω ⊂ R3 is a polyhedral domain and106

aΩ (u, v) :=

∫
Ω

2µ(x)
(
ε(u(x)) : ε(v(x))

)
dx+

∫
Ω

λ(x)
(
div(u(x)) div(v(x))

)
dx,107

L(v) :=

∫
Ω

f(x) · v(x) dx.108
109

The Lamé parameters 0 < λ(x), µ(x) : R3 → R are scalar coefficient functions,110

f ∈
(
L2(Ω)

)3
,111

ε(u) := 1
2

(
∇u+

(
∇u
)T)

112

and113

A : B := tr(ATB) =

d∑
i,j=1

AijBij .114

for any matrices A,B ∈ R3×3.115
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We will consider problems with a highly heterogeneous Young modulus E : Ω →116
R, 0 < Emin ≤ E(x) ≤ Emax, and a positive Poisson ratio ν, bounded away, from117
above, by 1/2, and we define the Lamé parameters by118

λ(x) :=
E(x)ν

(1 + ν)(1− 2ν)
,119

µ(x) :=
E(x)

2(1 + ν)
.120

121

The algorithms described in this paper can also be applied to other linear,122
second-order elliptic problems including those in two dimensions.123

Let τh := τh(Ω) be a finite element discretization of Ω. We will use a conforming124
space V h(Ω) of piecewise linear or trilinear finite elements on this mesh, and for125
simplicity assume that the Lamé parameters are constant on each element T ∈ τh.126

We will use the conjugate gradient method preconditioned by two-level over-127
lapping Schwarz methods to solve the resulting linear system Ku = b.128

For completeness, we note that the Dirichlet boundary condition has been in-129
corporated into the global stiffness matrix by setting those rows and columns of K130
to unit vectors that correspond to Dirichlet boundary nodes.131

3. Two-level overlapping Schwarz methods. We will now introduce the132
two-level Schwarz algorithms, mostly following [43, Chapter 2.2]. The different133
variants considered in this paper will differ in the coarse space chosen; the design of134
the coarse space is the main issue in this study and many other studies of algorithms135
of this kind. In the next five sections, we will introduce four different variants. In136
section 12, we also explore alternatives that decrease the costs of using the two137
algorithms which use adaptive choices of their coarse spaces.138

We partition the domain Ω into N nonoverlapping subdomains Ωi with a max-139
imum diameter H, each a union of finite elements, and denote the corresponding140
interface by Γ :=

⋃
i 6=j (∂Ωi ∩ ∂Ωj) \ ∂Ω. We extend each subdomain Ωi by k lay-141

ers of finite elements to obtain an overlapping domain decomposition {Ω′
i}Ni=1 and142

introduce subspaces Vi := V h(Ω′
i), i ∈ 1, . . . , N, of finite element functions that143

vanish on ∂Ω′
i and in the complement of Ω′

i.144
Associated with each such subdomain is a restriction operator Ri : V

h(Ω) → Vi145
and an extension operator RT

i : Vi → V h. Furthermore, for any global coarse space146
V0 ⊂ V h, we define a linear interpolation operator R0 : V h → V0, where each of147
the columns of the matrix RT

0 represents a coarse basis function defined on the fine148
mesh τh.149

We will use exact solvers for all the subspaces defined in terms of bilinear forms150
on Vi, i ∈ {0, 1, . . . , N}, given by151

ãi (ui, vi) = aΩ
(
RT

i ui, R
T
i vi
)

∀ui, vi ∈ Vi;152153

cf. [43, Chapter 2.2]. The associated matrices are given by Ki = RiKRT
i , i =154

0, 1, . . . , N . The additive one-level Schwarz preconditioned operator is given by155
POS-1 =

∑N
i=1 R

T
i K

−1
i RiK, and that of the additive two-level Schwarz operator by156

POS-2 = RT
0 K

−1
0 R0K + POS-1.157

4. The GDSW preconditioner. In what follows, xh will denote a finite158
element node. Those on the interface form the set Γh := {xh ∈ Γ}. A key ingredient159
of each of our coarse spaces is a partition P of Γh into disjoint interface components160
ξh ⊂ Γh, s.t.161

Γh =
⋃

ξh∈P

ξh.162
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(A)GDSW partitioning GDSW vertex function GDSW edge function

R(A)GDSW partitioning RGDSW basis function

Fig. 1. Left: Decomposition of the interface Γh. Top-Left: Decomposition of Γh into
16 components: 4 vertices and 12 edges (with 4 nodes each) as used in the GDSW and adaptive
GDSW method. Bottom-Left: Decomposition of Γh into 4 components as used in the reduced
dimension GDSW and reduced dimension adaptive GDSW methods. Right: Corresponding coarse
functions for a two-dimensional diffusion problem are shown on the right for GDSW (top) and
RGDSW (bottom). Homogeneous Dirichlet boundary conditions are assumed on ∂Ω. The GDSW
vertex function (top-center) corresponds to the blue vertex. The GDSW edge function (top-right)
corresponds to the edge between the blue and magenta vertices. The RGDSW coarse function
(bottom-right) corresponds to the green component.

To simplify, we will omit the superscript h and write ξ instead of ξh.163
The GDSW, [5, 6], AGDSW, [19, 21], RGDSW, [9, 27] and section 6, and164

RAGDSW, section 7, preconditioners are two-level overlapping Schwarz methods,165
and their preconditioners can be written in matrix form as166

M−1 = Φ
(
ΦTKΦ

)−1
ΦT +

N∑
i=1

RT
i K

−1
i Ri.167

The basis functions of all our coarse spaces, i.e., the columns of Φ, are defined by an168
energy-minimal extension of the values ΦΓ on the interface Γh to the subdomains,169
i.e., by170

Φ =

[
ΦI

ΦΓ

]
= HΓΦΓ, HΓ :=

[
−K−1

II KIΓ

IΓ

]
.171

Here IΓ is the identity matrix on Γh and HΓ is constructed from submatrices of the172
global stiffness matrix173

K :=

[
KII KIΓ

KΓI KΓΓ

]
,174

where I refers to the set of variables not associated with the interface. We note175
that I also contains boundary nodes of Ω. We note that KII is block-diagonal and176
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6 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

that KΓI = KT
IΓ also can be written in block form as177

KII =


K

(1)
II

. . .
K

(N)
II

 ,KΓI =
[
K

(1)
ΓI . . . K

(N)
ΓI

]
.178

The superscripts of these matrices mark contributions from the subdomains Ωi to179
the stiffness matrix K.180

Given the sparsity of the stiffness matrix, reflecting the local coupling of the181
variables, all these matrix blocks are sparse and the coarse space basis functions182
are each associated only with a few subdomains. In the original GDSW method for183
the scalar two-dimensional case, the columns of ΦΓ are given by the characteristic184
functions of vertices and subdomain edges, i.e., the interface is partitioned as follows:185
Γh =

(⋃
v∈V v

)
∪
(⋃

e∈E e
)
, where V and E are the sets of subdomain vertices186

and edges, respectively, cf. Figure 1 (top-left) for the interface partition and (top-187
right) for two corresponding coarse functions. For the three dimensional case, the188
basis functions are defined analogously, using characteristic functions for interface189
vertices, edges, and faces.190

In more general cases, the boundary values on Γ span the restriction of the null191
space of KN to Γ, where KN is the stiffness matrix given by aΩ(·, ·) with a Neumann192
boundary condition on ∂Ω. Thus, for linear elasticity in three dimensions, and any193
subdomain edge which is not straight, we obtain 6 functions: 3 translations and 3194
rotations. We note that the restriction of the rigid body modes to a straight edge195
are linear dependent; see [7].196

The matrix of the GDSW coarse operator can be computed either by forming197
the triple matrix product198

ΦTKΦ199

or by exploiting the fact that200

ΦTKΦ =

[
−K−1

II KIΓΦΓ

ΦΓ

]T [
KII KIΓ

KΓI KΓΓ

] [
−K−1

II KIΓΦΓ

ΦΓ

]
201

= ΦT
ΓSΓΓΦΓ,202203

where SΓΓ = KΓΓ −KΓIK
−1
II KIΓ is the Schur complement obtained by eliminating204

the interior variables of all subdomains and those on the boundary of Ω.205

5. Standard adaptive GDSW coarse space. The standard adaptive206
GDSW method, the AGDSW method, uses the same interface partitioning P, based207
on subdomain vertices, edges, and faces, as the GDSW method. The coarse func-208
tions for the vertices are the same as for the GDSW variant but the columns of Φ209
corresponding to the edges and faces are not. Instead, we use a few of the eigen-210
functions of local generalized eigenvalue problems of the form211

(5.1) Sξξτ∗,ξ = λ∗,ξK
Ωξ

ξξ τ∗,ξ,212

where ξ corresponds to an edge or a face.213
To define the Schur complement Sξξ and the matrix K

Ωξ

ξξ , for any edge and214

face ξ, we will use the local stiffness matrix KΩξ on Ωξ with Neumann boundary215
conditions. Here Ωξ is the closure of the union of all subdomains which are adjacent216
to ξ and Ωξ := Ωξ \∂Ωξ its interior. The stiffness matrix KΩξ is defined by aΩξ

(·, ·)217
and can be assembled from the subdomain stiffness matrices of the subdomains218
adjacent to the edge or face.219
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Adaptive GDSW coarse spaces of reduced dimension for overlapping Schwarz methods 7

We partition the degrees of freedom of Ωξ into the set associated with ξ and220
the rest which forms a set R and write the stiffness matrix as221

KΩξ =

(
K

Ωξ

RR K
Ωξ

Rξ

K
Ωξ

ξR K
Ωξ

ξξ

)
.222

and can then define the Schur complement by223

Sξξ := K
Ωξ

ξξ −K
Ωξ

ξR

(
K

Ωξ

RR

)+
K

Ωξ

Rξ ,224

where
(
K

Ωξ

RR

)+
is a pseudoinverse of KΩξ

RR; see Remark 9.1 and section 13.225

We sort the eigenvalues of (5.1) in nondescending order; i.e., λ1,ξ ≤ λ2,ξ ≤ ... ≤226
λm,ξ where m is the number of unknowns of (5.1). We select all eigenvectors τ∗,ξ,227
with eigenvalues smaller or equal than a certain threshold, i.e., λ∗,ξ ≤ tolξ and then228
define τ∗,Γ as the extension by zero of τ∗,ξ from ξ to Γh. The coarse basis functions229
corresponding to ξ are then the extensions230

v∗,ξ := HΓτ∗,Γ231

and the columns of Φ are now given by the v∗,ξ, selected, and the GDSW vertex232
functions.233

Let tolE and tolF be the smallest tolerance used for the subdomain edges and234
faces, respectively. The following condition number estimate for the preconditioned235
operator has been derived previously for scalar diffusion problems; see [21, Corol-236
lary 6.6]:237

Lemma 5.1. The condition number of the AGDSW two-level Schwarz operator238
in three dimensions is bounded by239

κ(M−1
AGDSWK) ≤

(
20 +

34(NE)2nE
max

tolE
+

68(NF )2

tolF

)(
N̂c + 1

)
.240

The constant N̂c is an upper bound of the number of overlapping subdomains that241
any point xh ∈ Ω can belong to. NE and NF are the maximum number of subdomain242
edges and faces, respectively, of any subdomain. nE

max is the maximum number of243
subdomains that share a subdomain edge. All constants are independent of H, h,244
and the contrast of the coefficient function.245

This kind of result also holds for linear elasticity; see Corollary 11.5 and section 11.246

Remark 5.2. If tolξ = 0 for all ξ ∈ P, the AGDSW coarse space contains only247
the coarse functions of the GDSW coarse space. Thus, we obtain248

VGDSW = V 0
AGDSW ⊂ V

tol(P)
AGDSW;249

cf. also Remark 7.1.250

6. A reduced dimension GDSW coarse space. We will first give a simple251
description of an interface partition for a structured mesh and domain decomposi-252
tion. This partition can also be used for the reduced dimension adaptive GDSW253
coarse spaces.254

Our goal is to reduce the number of interface components. To this end, each255
vertex of the coarse mesh will be associated with an interface component ξ formed by256
parts of the edges and faces adjacent to the vertex. A disjoint partition is obtained257
by distributing parts of these faces and edges equally, or almost equally, between258
nearby vertices; see Figure 1 (bottom-left) for a two-dimensional representation.259
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8 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

Ω1 Ω2 Ω3

Fig. 2. Left: Partitioning of the RGDSW interface components into the respective parts of
vertices and edges as required for the right hand side of the generalized eigenvalue problem in
the RAGDSW method. Each component is partitioned into 5 subcomponents (4 edges, 1 vertex).
Right: The image shows a case, in which a NEC can consist of two disjoint connected components.
The interface of the domain Ω = ∪3

i=1Ωi is indicated by thick black lines.

The reduced dimension GDSW coarse space is then defined completely analo-260
gously to the GDSW coarse space. Thus the restriction of the null space elements261
to the interface components is first extended by zero to the rest of the interface262
nodes and then extended with minimal energy to the subdomain interiors to obtain263
the coarse functions; see Figure 1 (bottom-right) for one of the coarse functions for264
a two-dimensional diffusion problem.265

We note that our RGDSW coarse space differs from those of [9] but that can266
be regarded as a variant of the coarse spaces introduced in that paper.267

7. The reduced dimension adaptive GDSW coarse space. For the re-268
duced adaptive GDSW coarse space, we need to partition each interface component269
ξ, as those of the previous section, into subcomponents. For a structured mesh and270
domain decomposition, as in that section, we partition each ξ into subsets related to271
the subdomain vertices, edges, and faces. With V, E , and F the sets of subdomain272
vertices, edges, and faces, respectively, we define subcomponents ξi of ξ such that273

(7.1) {ξi}
nξ

i=1 = {ξ ∩ c : c ∈ V ∪ E ∪ F ∧ c ∩ ξ 6= ∅},274

where nξ is the number of subcomponents of ξ; see Figure 2 (left) for a two-275

dimensional case. We next partition K
Ωξ

ξξ with respect to the subsets {ξi}
nξ

i=1, into276

K
Ωξ

ξξ =
(
K

Ωξ

ξiξj

)nξ

i,j=1
277

and, as before, we define the Schur complement by278

Sξξ := K
Ωξ

ξξ −K
Ωξ

ξR

(
K

Ωξ

RR

)+
K

Ωξ

Rξ ,279

where
(
K

Ωξ

RR

)+
is a pseudoinverse of K

Ωξ

RR; see Remark 9.1 and section 13. Fur-280

thermore, let281

(7.2) K̃ξξ := blockdiag
i=1,...,nξ

(K
Ωξ

ξiξi
)282

and introduce a generalized eigenvalue problem, given in matrix form by283

Sξξτ∗,ξ = λ∗,ξK̃ξξτ∗,ξ.284

As in section 5, the eigenvalues are sorted in a nondecreasing order and eigen-285
vectors τ∗,ξ corresponding to λ∗,ξ ≤ tolξ are selected and then extended by zero to286
Γh as τ∗,Γ. The coarse basis functions, i.e., the columns of Φ, corresponding to ξ287
are the extensions v∗,ξ := HΓτ∗,Γ.288
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Remark 7.1. If tolξ = 0 for all ξ ∈ P, the RAGDSW coarse space contains only289
the coarse functions associated with the null space of the Schur complement Sξξ.290
The latter is identical to the null space of KΩξ restricted to ξ. Thus, in this case,291
RAGDSW reduces to RGDSW, and we have292

VRGDSW = V 0
RAGDSW ⊂ V

tol(P)
RAGDSW.293

8. Interface partitioning for RAGDSW on unstructured meshes. For294
unstructured cases, we will define the partitioning P using nodal equivalence classes295
and begin with definitions of connected components of finite element nodes and of296
nodal equivalence classes. We note that equivalence classes have previously been297
used in [9] for similar purposes.298

Two finite element nodes xh
1 , x

h
2 ∈ Γh are said to be adjacent, if there exists299

a finite element edge or face z ⊂ Γ such that xh
1 , x

h
2 ∈ z, the closure of z. A set300

of nodes γ ⊂ Γh is said to form a connected component, if, for any two nodes301
xh
0 , x

h
s ∈ γ, there exists a path (xh

0 , . . . , x
h
s ), xh

i ∈ γ, of adjacent nodes.302
For any node xh ∈ Ω, let303

(8.1) n(xh) := {i ∈ {1, 2, . . . , N} : xh ∈ Ωi}304

be the set of indices of the subdomains which have xh in common. To partition305
a set of nodes γ ⊂ Γh, we define nodal equivalence classes (NECs) by the relation306
xh
1 ∼ xh

2 ⇔ n(xh
1 ) = n(xh

2 ), for any two nodes xh
1 , x

h
2 ∈ γ. We further partition each307

NEC into its connected components based on the adjacency of nodes; cf. Figure 2308
(right).309

By N (xh), we denote the NEC of a node xh ∈ γ, i.e., xh ∈ N (xh). If n(xh
2 ) (310

n(xh
1 ), then N (xh

1 ) is said to be an ancestor of N (xh
2 ) which in turn is a descendant311

of N (xh
1 ). If a NEC does not have an ancestor, we call it a root.312

We note that for γ = Γh a root is a vertex (i.e., a coarse node) in the case313
of cuboid subdomains. However, often for unstructured domain decompositions314
obtained, e.g., by METIS [29], a root can be a coarse edge or coarse face as well; see315
further the discussion in [9]. We note that for special cases of structured domain316
decompositions, e.g., a beam built from a union of cubes, the same can occur.317

We now give a general description of the interface partition for RAGDSW for318
an unstructured mesh and domain decomposition. We will define components ξ,319
s.t. each ξ contains only one root and parts of its descendants. Furthermore, we320
will assure that the resulting interface partition P is nonoverlapping to obtain a321
partition P of connected disjoint components ξ ∈ P s.t.322

Γh =
⋃
ξ∈P

ξ.323

Several specific constructions are possible. Relevant aspects are, e.g., obtaining324
components of similar size, nondegenerate components, and parallel efficiency of325
the construction.326

For the results in this paper, we have constructed the interface partition in the327
following way: We initialize each component ξ ∈ P with the nodes of a root and328
add the remaining nodes in an iterative process.329

Starting with the roots, we grow sets which will result in all the subsets ξ ∈ P.330
In each step of an iteration, we add all nodes which are adjacent to elements of331
each of the current sets, which have not been previously assigned, and which are332
descendants of the root of the set. We repeat this process until all interface nodes333
have been assigned to a ξ ∈ P. Figure 3 depicts sample partitions for two and three334
dimensions.335

We note that for the unstructured meshes in section 14, the average number of336
degrees of freedom per eigenvalue problem is increased by roughly 50% and with337
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Fig. 3. Sample partitions in two dimensions (left) and three dimensions (right) for un-
structured domain decompositions. For the two-dimensional case, the interface is given by thick
black lines and the interface components ξ ∈ P by different markers. For the three-dimensional
case, coarse nodes are indicated by white spheres; interface components are shown in different
colors. For a clearer visualization, only those finite element faces are shown, whose nodes are all
contained in the respective interface component. Thus, gaps indicate finite element faces, whose
nodes are part of several interface components.

the maximum roughly doubled, compared to the face eigenvalue problems used in338
the standard AGDSW.339

As before, we partition each interface component into its subcomponents. Let340
NΓh be the set of NECs of Γh and for ξ ∈ P let341

Nξ := {ξ ∩ c : c ∈ NΓh ∧ ξ ∩ c 6= ∅}.342

Let nξ := |Nξ| be the number of NECs of ξ and let ξi, i = 1, . . . , nξ, be the343
resulting decomposition of ξ into {ξi}

nξ

i=1 = Nξ. We then have ξi ∩ ξj = ∅ (i 6= j)344
and ξ =

⋃nξ

i=1 ξi.345

Remark 8.1. If our problem satisfies a Neumann boundary condition on ∂ΩN ⊂346
∂Ω, in addition to a nonempty set ∂ΩD = ∂Ω \ ∂ΩN with a Dirichlet boundary347
condition, then the construction of the RAGDSW coarse space and the proof of the348
condition number estimate in sections 10 and 11 will essentially be the same. The349
finite element nodes that lie on the Neumann boundary but not on the interface350
Γ =

⋃
i 6=j (∂Ωi ∩ ∂Ωj) \ ∂ΩD are treated as interior nodes.351

In the next section, we will first describe the adaptive GDSW coarse spaces in352
variational form. Thereafter, we will derive a condition number estimate for the353
preconditioned two-level additive Schwarz operator based on the coarse space in-354
troduced above. We note that the proof remains valid for quite general interface355
partitions P and is not restriced to the one of RAGDSW.356

9. Variational description of adaptive GDSW-type coarse spaces. For357
ξ ∈ P the index set nξ contains the indices of all adjacent subdomains, i.e., the358
union of the index sets of all nodes xh ∈ ξ,359

(9.1) nξ =
⋃

xh∈ξ

n(xh).360

As in section 5, Ωξ is the closure of the union of adjacent subdomains, i.e., Ωξ =361 ⋃
i∈nξ Ωi.362

Let G ⊂ Ω be any union of sets s ∈ {T i ∩ T j 6= ∅ : Ti, Tj ∈ τh}. By zξ G(·), we363
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node of ξ
node of Ωξ \ ξ

Fig. 4. Graphical representation in two dimensions of the energy-minimal extension (9.3)
from ξ ∈ P to Ωξ (left) and sample energy-minimal extension for the diffusion equation (right)
in which the RAGDSW interface component ξ is highlighted in red and the remaining interface
nodes in light gray.

denote an extension-by-zero operator from ξ ⊂ G to G:364

(9.2)
zξ G : Xh(ξ) →

{
w|G : w ∈ V h(Ω), w = 0 in Ω \ ξ

}
v 7→ zξ G(v) :=

{
v(xh) ∀xh ∈ ξ,
0 ∀xh ∈ G \ ξ.

365

Here, Xh(ξ) := {v : ξ → R3}.366
By Hξ Ωξ

(·), we denote a possibly nonunique (cf. Remark 9.1) energy-minimal367
extension w.r.t. aΩξ

(·, ·) from ξ to Ωξ: let V h
0,ξ(Ωξ) := {w|Ωξ

: w ∈ V h(Ω), w(xh) =368

0 ∀xh ∈ ξ}, then for τξ ∈ Xh(ξ), an extension vξ := Hξ Ωξ
(τξ) ∈ V h(Ωξ) is given369

by a solution of370

(9.3)
aΩξ

(vξ, v) = 0 ∀v ∈ V h
0,ξ(Ωξ),

vξ(x
h) = τξ(x

h) ∀xh ∈ ξ;
371

cf. Figure 4. We note that the extension is computed with a homogeneous Neumann372
boundary condition on ∂Ωξ.373

As in section 8, let {ξi}
nξ

i=1 be the set of all NECs of a ξ ∈ P. Then ξi ∩ ξj = ∅374
(i 6= j) and ξ =

⋃nξ

i=1 ξi holds. We define the symmetric, positive definite bilinear375
form376

(9.4) cξ(u, v) :=

nξ∑
i=1

cξi(u, v) ∀u, v ∈ Xh(ξ),377

with378

(9.5) cξi(u, v) := aΩξi

(
zξi Ωξi

(u), zξi Ωξi
(v)
)

∀u, v ∈ Xh(ξ).379

The corresponding norm is defined by380

(9.6) ‖u‖2cξ := cξ(u, u) ∀u ∈ Xh(ξ).381

We define the following generalized eigenvalue problem on ξ ∈ P: Find τ∗,ξ ∈ Xh(ξ)382
such that383

aΩξ

(
Hξ Ωξ

(τ∗,ξ),Hξ Ωξ
(θ)
)
= λ∗,ξcξ(τ∗,ξ, θ) ∀θ ∈ Xh (ξ) .(9.7)384385
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The eigenvalues are again sorted in nondescending order; i.e., λ1,ξ ≤ λ2,ξ ≤ ... ≤386
λm,ξ and the eigenmodes accordingly, where m = dim

(
Xh (ξ)

)
. Furthermore, let387

the eigenmodes τ∗,ξ satisfy cξ(τk,ξ, τj,ξ) = δkj , where δkj is the Kronecker delta388
symbol. We select all eigenmodes τ∗,ξ where the eigenvalues are below a certain389
threshold, i.e., λ∗,ξ ≤ tolξ. Then, the coarse basis functions corresponding to ξ are390
the extensions391

(9.8) v∗,ξ := HΓ Ω

(
τΓ
)
∈ V h

0 (Ω), τΓ := zξ Γ(τ∗,ξ),392

of the selected τ∗,ξ, where v∗,ξ = HΓ Ω(τΓ) is given by the solution v∗,ξ ∈ V h
0 (Ω)393

that satisfies394

(9.9)
aΩl

(v∗,ξ, w) = 0 ∀w ∈ V h
0 (Ωl) , l = 1, ..., N,

v∗,ξ(x
h) = τΓ(x

h) ∀xh ∈ Γh.
395

We note that, contrary to (9.7), v∗,ξ vanishes on ∂Ωξ since τΓ = zξ Γ(τ∗,ξ) and since396
v∗,ξ = HΓ Ω

(
τΓ
)
∈ V h

0 (Ω). Therefore, (9.9) has a unique solution.397
For a general interface partition P, we define the adaptive GDSW coarse space398

as399

(9.10) VP :=
⊕
ξ∈P

span {vk,ξ : λk,ξ ≤ tolξ} .400

The standard AGDSW coarse space (see [21]) is based on the partition401

P := F ∪ E ∪ V.402

Since vertices, edges, and faces are NECs, we then have403

cξ(u, v) = aΩξ

(
zξ Ωξ

(u), zξ Ωξ
(v)
)

404

if ξ is a vertex, an edge, or a face.405

Remark 9.1. For the diffusion case the energy-minimal extension defined by406
(9.3) has a unique solution. If an interface component ξ is a straight edge or a vertex407
then 1 or 3 rotations, respectively, are in the null space of the extension operator408
for linear elasticity. However, as all solutions of (9.3) have the same energy, the409
choice of the particular solution does not influence the solution of the generalized410
eigenvalue problem (9.7): let v∗,ξ = Hξ Ωξ

(τ∗,ξ) be a solution of (9.3). Then all411
solutions are given by v∗,ξ + r, where r ∈ range

(
Hξ Ωξ

(0)
)
; for linear elasticity r412

is a rigid body mode. Since r ∈ V h
0,ξ(Ωξ), we have aΩξ

(
r,Hξ Ωξ

(θ)
)
= 0 by the413

definition of Hξ Ωξ
(θ). Therefore, v∗,ξ + r solves (9.3) and414

aΩξ

(
v∗,ξ + r,Hξ Ωξ

(θ)
)
= aΩξ

(
v∗,ξ,Hξ Ωξ

(θ)
)

∀θ ∈ Xh (ξ) .415

As a consequence, any operator defined by (9.3) yields the same generalized eigen-416
value problem (9.7). In section 13, we will provide some remarks on how to find417
the solution of (9.3) when it is not unique.418

Remark 9.2. We note that the left hand side of eigenvalue problem (9.7) is419
singular and its kernel contains the constant functions for the scalar diffusion case420
and the rigid body modes for linear elasticity. Therefore, the null space has a421
dimension of 1 for the scalar diffusion problem and at least 3 for linear elasticity.422
For a vertex (i.e., ξ = v ∈ V) the problem has only one (scalar diffusion) and three423
(linear elasticity) degrees of freedom. Thus, in the latter case, the solution is given424
by the vertex basis functions of the GDSW coarse space, i.e., the three translations425
in case of linear elasticity; cf. [21] and [7].426
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10. Spectral projections. We will now consider the projections427

ΠPw :=
∑
ξ∈P

Πξw, Πξw :=
∑

λk,ξ≤tolξ

cξ(w, vk,ξ)vk,ξ(10.1)428

429

onto the space VP . Here, vk,ξ are the energy-minimal extensions of the eigenfunc-430
tions determined by (9.8) and λk,ξ the corresponding eigenvalues from (9.7). For431
ξ ∈ P, let dξ : X

h(ξ)×Xh(ξ) → R be the symmetric, positive semidefinite bilinear432
form433

dξ(·, ·) := aΩξ
(Hξ Ωξ

(·),Hξ Ωξ
(·)).(10.2)434435

For any union B ⊂ Ω of finite elements T ∈ τh, let436

|v|a(B) :=
√

aB(v, v) ∀v ∈ V h(Ω).(10.3)437438

We find that439

(10.4) |v|2dξ
:= dξ(v, v) =

∣∣Hξ Ωξ
(v)
∣∣2
a(Ωξ)

≤ |v|2a(Ωξ)
∀ v ∈ V h(Ω),440

due to the energy-minimal property of the extension operator.441
Using standard arguments of spectral teory, we obtain two important properties442

of the projection Πξ, required for the proof of the condition number estimate in443
section 11; cf., e.g., [21, Lemma 5.3] and [20, Lemma 4.1].444

Lemma 10.1. Let the eigenpairs {(τk,ξ, λk,ξ)}
dim

(
Xh(ξ)

)
k=1 from (9.7) be chosen445

such that cξ(τk,ξ, τj,ξ) = δkj and such that the eigenpairs are sorted in nondescending446
order w.r.t. the eigenvalues. Then the operator Πξ defines a projection which is447
orthogonal with respect to the bilinear form dξ(·, ·) and therefore448

|u|2dξ
= |Πξu|2dξ

+ |u−Πξu|2dξ
, ∀u ∈ Xh(ξ).449

In addition, we have, from spectral theory,450

‖u−Πξu‖2cξ ≤ 1

tolξ
|u−Πξu|2dξ

.451
452

The following lemma follows directly from Lemma 10.1; cf. [21, Lemma 2].453

Lemma 10.2. For ξ ∈ P and u ∈ V h(Ω) it holds that454

‖u−Πξu‖2cξ ≤ 1

tolξ

∑
k∈nξ

|u|2a(Ωk)
.455

Proof. We have456

‖u−Πξu‖2cξ
Lemma 10.1

≤ 1

tolξ
|u−Πξu|2dξ

≤ 1

tolξ
|u|2dξ

457

(10.4)
≤ 1

tolξ
|u|2a(Ωξ)

=
1

tolξ

∑
k∈nξ

|u|2a(Ωk)
.458

459
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11. Convergence analysis. To prove a condition number estimate, we will460
prove the existence of a stable decomposition; cf. [43, Chapter 2]. We therefore461
define the coarse interpolation I0 := ΠP as the projection onto the coarse space462
V0 := VP ; cf. (9.10) and (10.1). Thus the coarse component of the stable decompo-463
sition is defined as464

u0 := I0u := ΠPu.465466

467

Lemma 11.1. For ξ ∈ P and u ∈ V h(Ω), we have468

‖u− u0‖2cξ = cξ(u− u0, u− u0) ≤
1

tolξ

∑
k∈nξ

|u|2a(Ωk)
.469

Proof. We have470

‖u− u0‖2cξ =

nξ∑
i=1

|zξi Ωξi
(u−ΠPu)|2a(Ωξi

)471

=

nξ∑
i=1

|zξi Ωξi
(u−Πξu)|2a(Ωξi

)472

= ‖u−Πξu‖2cξ473

Lemma 10.2
≤ 1

tolξ

∑
k∈nξ

|u|2a(Ωk)
.474

475

Next, we derive an estimate for the energy of the coarse component.476

Lemma 11.2. It holds that477

|u0|2a(Ω) ≤ 2 |u|2a(Ω) +
2Cτ

tolP

∑
ξ∈P

∑
k∈nξ

|u|2a(Ωk)
≤ 2

(
1 +

CτN
ξ

tolP

)
|u|2a(Ω),478

479

where Cτ is the maximum number of vertices of any element T ∈ τh(Ω), and480

(11.1) Nξ := max
1≤i≤N

|P(Ωi)|, P(Ωi) := {ξ ∈ P : ξ ∩ Ωi 6= ∅}481

is the maximum number of interface components ξ ∈ P of any subdomain, and482
tolP := minξ∈P tolξ.483

Proof. We can use the fact that u0 is energy-minimal w.r.t. |·|a,Ωi
for each484

subdomain Ωi, i.e., u0 = HΓ Ω(u0), and obtain485

|u0|2a(Ω) ≤ 2|HΓ Ω(u)|2a(Ω) + 2|HΓ Ω(u− u0)|2a(Ω)486

≤ 2|u|2a(Ω) + 2|zΓ Ω(u− u0)|2a(Ω).487488
Let489

(11.2) Nec,P :=
⋃
ξ∈P

{ξi, i = 1, . . . , nξ}490

be the set of interface components of the ξ ∈ P partitioned into their nodal equiv-491
alence classes ξi, i = 1, . . . , nξ. Then, ξi ∩ ξj = ∅ for i 6= j, and

⋃
ξi∈Nec,P

ξi = Γh,492
and493

|zΓ Ω(u− u0)|2a(Ω) = |
∑

ξi∈Nec,P

zξi Ω(u− u0)|2a(Ω)494

=
∑

T∈τh(Ω)

|
∑

ξi∈Nec,P

zξi Ω(u− u0)|2a(T ).495

496
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There can be at most Cτ NECs ξi that are nonzero in any element T . Thus, we497
have using the Cauchy–Schwarz inequality498 ∑

T∈τh(Ω)

|
∑

ξi∈Nec,P

zξi Ω(u− u0)|2a(T ) ≤
∑

T∈τh(Ω)

Cτ

∑
ξi∈Nec,P

|zξi Ω(u− u0)|2a(T )499

= Cτ

∑
ξi∈Nec,P

|zξi Ω(u− u0)|2a(Ωξi
)500

= Cτ

∑
ξ∈P

‖u− u0‖2cξ501

≤ Cτ

tolP

∑
ξ∈P

∑
k∈nξ

|u|2a(Ωk)
,502

503

where in the last step we have used Lemma 11.1. Thus,504

|u0|2a(Ω) ≤ 2|u|2a(Ω) + 2
Cτ

tolP

∑
ξ∈P

∑
k∈nξ

|u|2a(Ωk)
≤ 2

(
1 +

CτN
ξ

tolP

)
|u|2a(Ω).505

506

In Theorem 11.4, we will derive estimates based on the product of u − u0507
and a partition of unity function θi associated with each subdomain. We employ an508
overlapping decomposition {Ω̃i}Ni=1 with overlap h by extending the nonoverlapping509
decomposition {Ωi}Ni=1 by one layer of finite elements. The estimates are carried510
out separately on Ω̃i \ Ωi and Ωi: the former locally and the latter globally. The511
following lemma covers both cases.512

Lemma 11.3. Let l ∈ {0, 1, . . . , N} and B = Ω̃l \Ωl, if l > 0, and B = Ω0 := Ω513
for l = 0. Furthermore, let Ψ : B → R s.t. Ψ|ξi is constant on ξi ∈ Nec,P , ξi ⊂ B,514
i.e., Ψ(xh) = Ci for all xh ∈ ξi. Additionally, we assume that 0 ≤ Ψ ≤ 1 and515
Ψ(xh) = 0 for xh /∈ Γh ∩B. Then,516 ∣∣Ih(Ψ · (u− u0))

∣∣2
a(B)

≤ Cτ

tolP

∑
ξ∈P(Ωl)

∑
k∈nξ

|u|2a(Ωk)
,517

where Ih(·) is the pointwise interpolation operator of the finite element space V h(Ω).518

Proof. We define the set Nec,P(Ωl) := {ξj ∈ Nec,P : ξj ∩ Ωl 6= ∅} of NECs that519
are part of or touch Ωl. Given that P(Ω0) = P, it is Nec,P(Ω0) = Nec,P . Since520
zξi B(·) acts as an identity operator on ξi, we have521 ∣∣Ih(Ψ · (u− u0))

∣∣2
a(B)

=
∣∣∣ ∑
ξi∈Nec,P(Ωl)

zξi B(Ψ · (u− u0))
∣∣∣2
a(B)

522

=
∑

T∈τh(B)

∣∣∣ ∑
ξi∈Nec,P(Ωl)

zξi B(Ψ · (u− u0))
∣∣∣2
a(T )

.523

524

There can be at most Cτ NECs ξi that are nonzero in any element T . Thus, we525
have using the Cauchy–Schwarz inequality526 ∣∣∣ ∑

ξi∈Nec,P(Ωl)

zξi B(Ψ · (u− u0))
∣∣∣2
a(T )

≤ Cτ

∑
ξi∈Nec,P(Ωl)

∣∣∣zξi B(Ψ · (u− u0))
∣∣∣2
a(T )

527

528

and consequently529 ∣∣Ih(Ψ · (u− u0))
∣∣2
a(B)

≤ Cτ

∑
ξi∈Nec,P(Ωl)

∣∣∣zξi Ωξi
(Ψ · (u− u0))

∣∣∣2
a(Ωξi

)
.530

531
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Since 0 ≤ Ψ ≤ 1 is constant on a NEC ξi ∈ Nec,P(Ωl), we have532 ∑
ξi∈Nec,P(Ωl)

∣∣∣zξi Ωξi
(Ψ · (u− u0))

∣∣∣2
a(Ωξi

)
=

∑
ξi∈Nec,P(Ωl)

(
Ψ|ξi

)2∣∣∣zξi Ωξi
(u− u0)

∣∣∣2
a(Ωξi

)
533

≤
∑

ξi∈Nec,P(Ωl)

∣∣∣zξi Ωξi
(u− u0)

∣∣∣2
a(Ωξi

)
534

≤
∑

ξ∈P(Ωl)

nξ∑
i=1

∣∣∣zξi Ωξi
(u− u0)

∣∣∣2
a(Ωξi

)
535

=
∑

ξ∈P(Ωl)

cξ(u− u0, u− u0).536

537

Using Lemma 11.1, we obtain538

Cτ

∑
ξ∈P(Ωl)

cξ(u− u0, u− u0) ≤
Cτ

tolP

∑
ξ∈P(Ωl)

∑
k∈nξ

|u|2a(Ωk)
.539

Thus, in total, we have540 ∣∣Ih(Ψ · (u− u0))
∣∣2
a(B)

≤ Cτ

tolP

∑
ξ∈P(Ωl)

∑
k∈nξ

|u|2a(Ωk)
.541

542

Now, we are able to prove the existence of a stable decomposition.543

Theorem 11.4 (Stable Decomposition). For each u ∈ V h
(
Ω
)
, there exists a544

decomposition u =
N∑
i=0

RT
i ui, ui ∈ Vi = V h

(
Ω′

i

)
, where Ω′

0 := Ω, such that545

N∑
i=0

|ui|2a(Ω′
i)
≤ C2

0 |u|
2
a(Ω) ,546

547

where C2
0 =

(
14 + (12Nξ + C) Cτ

tolP

)
and548

(11.3) C := C
(
{Ωi}Ni=1,P

)
:= max

1≤i≤N

N∑
j=1

|{ξ ∈ P : i, j ∈ nξ}|.549

C is a measure for the P-connectivity of the domain decomposition: Two subdomains550
i, j are connected, if they touch the same interface component ξ ∈ P, i.e., if i, j ∈ nξ.551

Proof. On the overlapping decomposition {Ω̃i}Ni=1 of width h, we consider the552
local components ui := Ih (θi · (u− u0)) with the partition of unity {θi}Ni=1, θi :553
{xh ∈ Ω} → R, where554

θi(x
h) :=

{
1

|n(xh)| if xh ∈ Ωi,

0 elsewhere,
555

where xh is a finite element node and |n(xh)| is the number of subdomains the node556
xh is contained in.557

We note that, in general, {Ω̃i}Ni=1 differs from the decomposition {Ω′
i}Ni=1 used558

in the first level of the preconditioner, in which an overlap with one or more layers559
of finite elements is used. The decomposition {Ω̃i}Ni=1 is only used in the proof560
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and, since Ω̃i ⊂ Ω′
i, we have ui ∈ Vi. Thus, no restriction is placed on the size of561

the overlap of {Ω′
i}Ni=1. The condition number estimate in Corollary 11.5 does not562

reflect the fact that the rate of convergence of the algorithm often improves when563
the overlap is increased.564

We define the cutoff function θ : {xh ∈ Ω} → [0, 1] s.t.565

θ(xh) := 1− 1

|n(xh)|
for any node xh ∈ Ω.566

Then, we have567

|ui|2a(Ω′
i)
= |ui|2a(Ω̃i)

= |Ih(θi(u− u0))|2a(Ω̃i)
568

= |Ih(θi(u− u0))|2a(Ωi)
+ |Ih(θi(u− u0))|2a(Ω̃i\Ωi)

569

≤ 2|Ih((1− θi)(u− u0))|2a(Ωi)
+ 2|u− u0|2a(Ωi)

+ |Ih(θi(u− u0))|2a(Ω̃i\Ωi)
570

≤ 2|Ih(θ(u− u0))|2a(Ωi)
+ 4|u|2a(Ωi)

+ 4|u0|2a(Ωi)
+ |Ih(θi(u− u0))|2a(Ω̃i\Ωi)

.571
572

As θ is only nonzero on Γh, it follows from Lemma 11.3 that573

N∑
i=1

2|Ih(θ(u− u0))|2a(Ωi)
= 2|Ih(θ(u− u0))|2a(Ω)574

≤ 2
Cτ

tolP

∑
ξ∈P

∑
k∈nξ

|u|2a(Ωk)
575

≤ 2
CτN

ξ

tolP
|u|2a(Ω).(11.4)576

577

Similarly, we have578

(11.5)
N∑
i=1

|Ih(θi(u−u0))|2a(Ω̃i\Ωi)
≤ Cτ

tolP

N∑
i=1

∑
ξ∈P(Ωi)

∑
k∈nξ

|u|2a(Ωk)
≤ C Cτ

tolP
|u|2a(Ω) .579

Thus, using (11.4), (11.5), and Lemma 11.2, we obtain580

N∑
i=0

|ui|2a(Ω′
i)
= |u0|2a(Ω) +

N∑
i=1

|ui|2a(Ω̃i)
581

≤ 5|u0|2a(Ω) + 4|u|2a(Ω) + 2
CτN

ξ

tolP
|u|2a(Ω) +

CτC
tolP

|u|2a(Ω)582

≤ 5 · 2
(
1 +

CτN
ξ

tolP

)
|u|2a(Ω) +

(
4 + (2Nξ + C) Cτ

tolP

)
|u|2a(Ω)583

=

(
14 + (12Nξ + C) Cτ

tolP

)
|u|2a(Ω).584

585

From Theorem 11.4, we directly obtain a condition number estimate for the pre-586
conditioned system.587

Corollary 11.5. The condition number of the RAGDSW two-level Schwarz588
operator in three dimensions is bounded by589

κ
(
M−1

RAGDSWK
)
≤
(
14 + (12Nξ + C) Cτ

tolP

)(
N̂c + 1

)
,590

591

where N̂c is an upper bound for the number of overlapping subdomains {Ω′
i}Ni=1 any592

point xh ∈ Ω can belong to. All constants are independent of H, h, and the contrast593
of Young’s modulus E.594

This manuscript is for review purposes only.



18 A. Heinlein, A. Klawonn, J. Knepper, O. Rheinbach, O. Widlund

Proof. Since we use exact local solvers, we directly obtain595

κ
(
M−1

RAGDSWK
)
≤ C2

0

(
N̂c + 1

)
,596

where C2
0 is the constant of the stable decomposition; cf. [43, Lemma 3.11] and597

the follow-up discussion and the proof of [11, Theorem 4.1]. We obtain the final598
estimate using Theorem 11.4.599

12. A variant using local Neumann problems. We will now describe a600
technique that can significantly speed up the algorithm in a parallel setting and601
greatly facilitate its implementation.602

We first consider the case of an interface component which is a coarse face f .603
The energy-minimal extension used in the generalized eigenvalue problem (9.7) is604
only weakly coupled between the two subdomains via the nodes adjacent to the605
face, i.e.

(
Γh ∩ Ωi ∩ Ωj

)
\ f contains relatively few nodes on certain coarse edges606

and at certain coarse nodes. Instead of computing this coupled extension Hf Ωf
(·)607

from the face f to the two adjacent subdomains as in (9.3), we can compute the608
extensions to each subdomain Ωi,Ωj separately. We expect that little information609
will be lost. We find that610

aΩξ

(
Hξ Ωξ

(θ),Hξ Ωξ
(θ)
)
≥
∑
k∈nξ

aΩk
(Hξ Ωk

(θ),Hξ Ωk
(θ)) ,611

612

for θ ∈ Xh (ξ). Since the subdomains are only weakly coupled via these adjacent613
nodes of the face, we expect only a small change if we replace the left hand side614
of (9.7) using this alternative extension and that the dimension of the coarse space615
will increase only slightly.616

The same technique can be applied to arbitrary interface components ξ ∈ P.617
We might expect that the coupling will be stronger between subdomains for smaller618
interface components but our numerical results in section 14 suggest that the in-619
crease in the coarse space dimension is moderate in all cases considered.620

We indicate that this technique is employed by adding a trailing S to the coarse621
space name: VAGDSW−S and VRAGDSW−S. Using this modification yields the same622
condition number bound as in Corollary 11.5, since the modified dξ(·, ·), dSξ (·, ·),623
satisfies the same inequality as in (10.4):624

|v|2dS
ξ
:= dSξ (v, v) :=

∑
k∈nξ

|Hξ Ωk
(v)|2a(Ωk)

≤
∑
k∈nξ

|v|2a(Ωk)
= |v|2a(Ωξ)

∀v ∈ V h(Ω).625

Let the local (nonoverlapping) stiffness matrices with a Neumann boundary for626
the corresponding bilinear forms aΩi(·, ·) be given by KΩi . For each ξ ∈ P, we627
partition the degrees of freedom of Ωi into those in ξ ∩ Ωi and the remaining ones,628
R. We have629

KΩi =

(
KΩi

RR KΩi

Rξ

KΩi

ξR KΩi

ξξ

)
.630

Let RT
ξ,Ωk

map the degrees of freedom of ξ ∩ Ωk to ξ. We define631

SS
ξξ :=

∑
k∈nξ

RT
ξ,Ωk

Sk
ξξ,632

with the Schur complements633

Sk
ξξ := KΩk

ξξ −KΩk

ξR

(
KΩk

RR

)+
KΩk

Rξ , k ∈ nξ,634
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where
(
KΩk

RR

)+
is a pseudoinverse of KΩk

RR, cf. Remark 9.1 and section 13. Using the635

definition of K̃ξξ from (7.2), we obtain the modified generalized eigenvalue problem636
given in matrix form by637

SS
ξξτ∗,ξ = λ∗,ξK̃ξξτ∗,ξ.638

13. Remarks on the computation of the energy-minimal extension.639
For an interface component ξ ∈ P, the energy-minimal extension (9.3) satisfies640
a homogeneous Neumann boundary condition on ∂Ωξ \ ξ. Therefore, for linear641
elasticity, if ξ consists only of a single node or if it is given by a straight edge,642
then all three rotations or the rotation around the edge are in the null space of643
the problem; cf. Remark 9.1. Thus, in such cases, the operator Hξ Ωξ

(·) defined644
by (9.3) is symmetric and only positive semidefinite.645

We also note that if the variant described in section 12 is used, the extension646
operators are even more likely to be only positive semidefinite, since the extension647
is defined on the sets ξ ∩ Ωk, k ∈ nξ.648

In an implementation, we have several options. Theoretically, we could compute649
a full pseudoinverse, however, this is very expensive in terms of processor time and650
memory. As an algebraic alternative, a pivoted factorization can be computed such651
that the diagonal is rank revealing. Alternatively, we can add a small regularization652
term εR to obtain a symmetric, positive definite problem; e.g., εR = 10−13Kdiag,653
where Kdiag is the diagonal of the respective matrix.654

We have also considered two further, geometric approaches. One approach is to655
remove the null space by a projection. For this, we need to determine a basis of the656
null space, i.e., compute the rotations which requires geometric information. This657
approach has another downside, if we want to use a direct solver on the resulting658
system, since transforming the system is quite expensive and the transformed system659
is generally more dense.660

A second geometric approach is less algebraic and eliminates a subset of the661
degrees of freedom of the matrix H corresponding to Hξ Ωξ

(·) at the expense of662
solving a small Schur complement system using a pseudoinverse. At best, this663
amounts to prescribing a zero Dirichlet boundary condition on some additional664
degrees of freedom. We partition the matrix H w.r.t. ξ and the remaining degrees665
of freedom R. To evaluate Hξ Ωξ

(·) requires the application of H−1
RR. However,666

if ξ is a straight edge or a vertex, the submatrix HRR has a null space of 1 or 3667
rotations.668

In general, we pick as least as many degrees of freedom D̃ ⊂ R as the dimension669
of the null space of HRR . Let the remaining degrees of freedom be denoted by670
R̃ ⊂ R. The matrix HRR is partitioned by R̃ and D̃ s.t.671

HRR =

(
HR̃,R̃ HR̃,D̃

HD̃,R̃ HD̃,D̃

)
.672

The variables R̃ are then eliminated to obtain a Schur complement system673 (
HR̃,R̃ HR̃,D̃

0 SD̃,D̃

)
, SD̃,D̃ = HD̃,D̃ −HD̃,R̃H

−1

R̃,R̃
HR̃,D̃.674

If D̃ was chosen properly, the submatrix HR̃,R̃ is invertible. For example, if ξ is a675

straight edge and D̃ corresponds to a node which does not lie on the same straight676
as the edge (note that three degrees of freedom are associated with each node), then677
HR̃,R̃ is invertible. In that case, the Schur complement is well defined and has a678
null space of the same dimension as HRR. Thus, we can solve the corresponding679
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Fig. 5. Cross section (left) of a domain decomposition of a cube and a discontinuous
coefficient function E with beams of large coefficients (light blue) crossing the domain. The beams
of large coefficients do not touch the domain boundary. The light blue color corresponds to a
coefficient of Emax = 106 and the remainder is set to Emin = 1.0. Number of subdomains:
125; number of nodes: 132 651 (degrees of freedom: 397 953); average degrees of freedom per
overlapping subdomain: 6 198; overlap: two layers of finite elements. Structured tetrahedral
mesh; unstructured domain decomposition (METIS). For the corresponding results, see Table 2.
Taken from [21, Figure 8].

system using a pseudoinverse. This is much cheaper than using a pseudoinverse on680
KRR, since SD̃,D̃ is of a much smaller dimension than KRR.681

If we select the degrees of freedom in D̃ carefully, the Schur complement will682
be identically zero, i.e., evaluating Hξ Ωξ

(·) is no more expensive than solving a683
linear system with KR̃,R̃ and the cost will be comparable to that of a case with an684
invertible KRR.685

14. Numerical results. In this section, we present numerical results to com-686
pare the nonadaptive coarse spaces GDSW and RGDSW, the adaptive coarse spaces687
AGDSW (section 5) and RAGDSW (section 8), and their S-variants AGDSW–S and688
RAGDSW–S; cf. section 12.689

We show numerical results for a discretization of problem (2.1) with a Pois-690
son ratio ν = 0.4, the right hand side f ≡ (1, 1, 1)T , and several coefficient func-691
tions given by different choices of the Young modulus function E(·). The small-692
est Young modulus Emin := minx∈Ω E(x) is always set to 1 and the maximum693
Emax := maxx∈Ω E(x) is specified in the respective figure and table caption. Ex-694
cept for the test case of Figure 6 and Table 3, the computational domain is the unit695
cube with a zero Dirichlet condition prescribed on all its boundary.696

We use piecewise linear basis functions on tetrahedra and we solve the resulting697
linear system with the preconditioned conjugate gradient (PCG) method and a698
relative stopping criterion of ‖r(k)‖2/‖r(0)‖2 < 10−8, where r(0) and r(k) are the699
initial and the kth unpreconditioned residuals. The reported condition numbers700
are the estimates obtained after the last iteration of the PCG method using the701
Lanczos method [39, Chapter 6.7.3]. We partition the domain into subdomains702
using METIS [29]. In all experiments, we use an overlap of two layers of finite703
elements; see section 3 for the definition of the overlap.704

The coefficient function of the first test problem is depicted in Figure 5; the705
corresponding results are given in Table 2. Experiments with both nonadaptive706
coarse spaces GDSW and RGDSW failed to converge in 2 000 iterations, clearly707
showing that adaptivity is required to obtain a robust preconditioner. By using708
the adaptive coarse spaces, we obtain acceptable condition numbers and iteration709
counts. The results show a significant reduction in the coarse space dimension for the710
RAGDSW variant compared to AGDSW. For example (tol = 0.05), the dimension711
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Table 2
Results for the coefficient function in Figure 5: iteration counts, condition numbers, and

resulting coarse space dimension for different coarse spaces. Number of subdomains: 125; degrees
of freedom: 397 953; overlap: two layers of finite elements; maximum coefficient Emax = 106;
relative stopping criterion ‖r(k)‖2/‖r(0)‖2 < 10−8. Structured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coefficient function E from Figure 5
V0 tol it. κ dimV0 (V/P , E , F ) dimV0/dof

VGDSW − >2 000 3.1·105 9 996 (1 707, 4 618, 3 671) 2.51%
VRGDSW − >2 000 3.9·105 3 358 (3 358, 0, 0) 0.84%
VAGDSW 0.100 71 41.1 14 439 (1 707, 4 943, 7 789) 3.63%
VAGDSW 0.050 90 59.5 13 945 (1 707, 4 915, 7 323) 3.50%
VAGDSW 0.010 132 161.1 13 763 (1 707, 4 912, 7 144) 3.46%
VAGDSW 0.001 327 971.8 13 721 (1 707, 4 907, 7 107) 3.45%
VAGDSW−S 0.100 63 28.7 14 597 (1 707, 5 020, 7 870) 3.67%
VAGDSW−S 0.050 89 57.5 14 004 (1 707, 4 949, 7 348) 3.52%
VAGDSW−S 0.010 134 166.0 13 767 (1 707, 4 914, 7 146) 3.46%
VAGDSW−S 0.001 305 973.1 13 729 (1 707, 4 911, 7 111) 3.45%
VRAGDSW 0.100 67 34.6 8 249 (8 249, 0, 0) 2.07%
VRAGDSW 0.050 88 61.3 7 683 (7 683, 0, 0) 1.93%
VRAGDSW 0.010 114 117.4 7 501 (7 501, 0, 0) 1.88%
VRAGDSW 0.001 383 1.4·103 7 401 (7 401, 0, 0) 1.86%
VRAGDSW−S 0.100 62 32.7 8 799 (8 799, 0, 0) 2.21%
VRAGDSW−S 0.050 79 51.4 7 903 (7 903, 0, 0) 1.99%
VRAGDSW−S 0.010 109 104.5 7 563 (7 563, 0, 0) 1.90%
VRAGDSW−S 0.001 268 902.7 7 525 (7 525, 0, 0) 1.89%

Fig. 6. (left) Discontinuous coefficient function E with coefficient layers of E = 106 in light
gray and an inclusion at the top right with E = 109 in dark grey. The remainder of the coefficient
in white is set to Emin = 1.0. (center) Boundary partition for Dirichlet (blue) and Neumann
(orange) boundary. (right) Domain decomposition of 50 subdomains. Number of nodes: 56 053
(degrees of freedom: 168 159); average degrees of freedom per overlapping subdomain: 5 632.2;
overlap: two layers of finite elements. Unstructured tetrahedral mesh; unstructured domain
decomposition (METIS). For the corresponding results, see Table 3. Taken from [21, Figure 9].

of VAGDSW−S is reduced by 43.6% by using VRAGDSW−S. And even while GDSW712
does not converge in 2 000 iterations, its coarse space is 26.5% larger than that of713
RAGDSW–S (tol = 0.05).714

For the next example, we consider a problem, for which we impose a Neu-715
mann boundary condition on most of the domain boundary; see Figure 6. The716
results in Table 3 show an even larger reduction in the coarse space dimension from717
AGDSW to RAGDSW compared to the previous case. We obtain a reduction of718
69.4% (tol = 0.05). The reason for this is the larger number of interface com-719
ponents: Since the AGDSW space contains the GDSW space and the RAGDSW720
space contains the RGDSW space, a significant part of the coarse space reduc-721
tion can be attributed to the smaller dimension of RGDSW compared to GDSW.722
This highlights the core idea behind the reduced dimension GDSW spaces in [9];723
the explanation is supported by the fact that the dimension of VRAGDSW is fairly724
close to that of VRGDSW. Therefore, since the coefficient function contains only725
relatively few connected large coefficient components, only a few additional coarse726
basis functions are required.727
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Table 3
Results for the coefficient function in Figure 6: iteration counts, condition numbers, and

resulting coarse space dimension for different coarse spaces. Number of subdomains: 50; degrees
of freedom: 168 159; overlap: two layers of finite elements; maximum coefficient Emax = 109;
relative stopping criterion ‖r(k)‖2/‖r(0)‖2 < 10−8. Unstructured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coefficient function E from Figure 6
V0 tol it. κ dimV0 (V/P, E , F ) dimV0/dof

VGDSW − 1 329 1.5·107 2 319 ( 291, 1 000, 1 028) 1.38%
VRGDSW − 1 549 1.0·107 572 ( 572, 0, 0) 0.34%
VAGDSW 0.100 60 20.2 2 732 ( 291, 1 058, 1 383) 1.62%
VAGDSW 0.050 69 28.1 2 631 ( 291, 1 058, 1 282) 1.56%
VAGDSW 0.010 71 28.2 2 626 ( 291, 1 058, 1 277) 1.56%
VAGDSW 0.001 152 1 162.2 2 613 ( 291, 1 052, 1 270) 1.55%
VAGDSW−S 0.100 58 18.9 2 741 ( 291, 1 059, 1 391) 1.63%
VAGDSW−S 0.050 69 28.1 2 631 ( 291, 1 058, 1 282) 1.56%
VAGDSW−S 0.010 72 28.2 2 626 ( 291, 1 058, 1 277) 1.56%
VAGDSW−S 0.001 142 733.7 2 614 ( 291, 1 053, 1 270) 1.55%
VRAGDSW 0.100 68 27.1 988 ( 988, 0, 0) 0.59%
VRAGDSW 0.050 85 43.8 804 ( 804, 0, 0) 0.48%
VRAGDSW 0.010 100 88.5 781 ( 781, 0, 0) 0.46%
VRAGDSW 0.001 183 769.1 774 ( 774, 0, 0) 0.46%
VRAGDSW−S 0.100 60 20.7 1 152 (1 152, 0, 0) 0.69%
VRAGDSW−S 0.050 78 35.2 868 ( 868, 0, 0) 0.52%
VRAGDSW−S 0.010 100 87.6 790 ( 790, 0, 0) 0.47%
VRAGDSW−S 0.001 115 141.1 786 ( 786, 0, 0) 0.47%

Fig. 7. Partial visualization of an unstructured tetrahedral mesh consisting of several discon-
nected components of foam-like structures. On the corresponding mesh of a cube, foam corresponds
to a large coefficient of Emax = 106 with Emin = 1.0 elsewhere. The large coefficient does not
touch the domain boundary. Number of subdomains: 100; number of nodes: 588 958 (degrees of
freedom: 1 766 874); average degrees of freedom per overlapping subdomain: 19 969.2; overlap:
two layers of finite elements. Unstructured tetrahedral mesh; unstructured domain decomposition
(METIS). For the corresponding results, see Table 4. Taken from [21, Figure 10].

We consider another realistic geometry in Figure 7 with a foamlike structure.728
We note that the foam is not a single connected structure but consists of several729
smaller disconnected foamlike structures. The results in Table 4 are similar to the730
previous ones. By using RAGDSW–S, we obtain a coarse space reduction of 49.9%731
compared to AGDSW–S (tol = 0.05). However, here, the dimension of VRAGDSW−S732
is more than double that of VRGDSW indicating that VRAGDSW−S is adaptively733
enriched with quite a few additional basis functions compared to VRGDSW.734

We conclude with averaged results for 100 random coefficient functions showing735
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Table 4
Results for the coefficient function in Figure 7: iteration counts, condition numbers, and

resulting coarse space dimension for different coarse spaces. Number of subdomains: 100; degrees
of freedom: 1 766 874; overlap: two layers of finite elements; maximum coefficient Emax = 106;
relative stopping criterion ‖r(k)‖2/‖r(0)‖2 < 10−8. Unstructured tetrahedral mesh; unstructured
domain decomposition (METIS).

Coefficient function E from Figure 7
V0 tol it. κ dimV0 (V/P , E , F ) dimV0/dof

VGDSW − 1 865 1.1·106 8 311 (1 167, 4 108, 3 036) 0.47%
VRGDSW − 1 613 9.3·105 2 313 (2 313, 0, 0) 0.13%
VAGDSW 0.10 52 21.4 12 367 (1 167, 4 358, 6 842) 0.70%
VAGDSW 0.05 68 43.8 10 940 (1 167, 4 351, 5 422) 0.62%
VAGDSW 0.01 167 333.4 10 304 (1 167, 4 324, 4 813) 0.58%
VAGDSW−S 0.10 50 18.7 12 539 (1 167, 4 389, 6 983) 0.71%
VAGDSW−S 0.05 63 32.2 11 005 (1 167, 4 362, 5 476) 0.62%
VAGDSW−S 0.01 147 158.1 10 320 (1 167, 4 338, 4 815) 0.58%
VRAGDSW 0.10 54 22.0 6 641 (6 641, 0, 0) 0.38%
VRAGDSW 0.05 80 45.2 4 868 (4 868, 0, 0) 0.28%
VRAGDSW 0.01 189 280.2 4 019 (4 019, 0, 0) 0.23%
VRAGDSW−S 0.10 50 18.4 7 833 (7 833, 0, 0) 0.44%
VRAGDSW−S 0.05 69 46.1 5 519 (5 519, 0, 0) 0.31%
VRAGDSW−S 0.01 151 202.6 4 152 (4 152, 0, 0) 0.23%

Table 5
Averaged results for 100 random coefficient functions (average large coefficient density:

11.08%): tolerance for the selection of the eigenfunctions, iteration counts, condition numbers,
and resulting coarse space dimension for different coarse spaces; maximum in brackets. Number
of subdomains: 512; number of nodes: 452 522 (degrees of freedom: 1 357 566); average degrees
of freedom per overlapping subdomain: 5 906.4; overlap: two layers of finite elements; maximum
coefficient Emax = 106; relative stopping criterion ‖r(k)‖2/‖r(0)‖2 < 10−8. Unstructured tetrahe-
dral mesh; unstructured domain decomposition (METIS). VGDSW and VRGDSW never converged
in 2 000 iterations.

Random coefficient function E
V0 tol it. κ dimV0 dimV0/dof

VGDSW − >2 000 ( − ) 2.1·105 (3.2·105) 49 862.0 (49 862) 3.7% (3.7%)
VRGDSW − >2 000 ( − ) 2.4·105 (3.7·105) 17 778.0 (17 778) 1.3% (1.3%)
VAGDSW 0.10 84.8 ( 93) 56.2 ( 80.7) 69 006.7 (69 892) 5.1% (5.1%)

0.05 106.3 (118) 92.1 ( 145.2) 66 482.5 (67 273) 4.9% (5.0%)
0.01 180.8 (228) 293.3 ( 662.9) 64 508.1 (65 235) 4.8% (4.8%)

VAGDSW−S 0.10 76.4 ( 84) 44.1 ( 54.2) 70 570.8 (71 632) 5.2% (5.3%)
0.05 99.3 (112) 77.9 ( 110.7) 67 445.3 (68 360) 5.0% (5.0%)
0.01 168.1 (195) 247.5 ( 448.4) 65 212.8 (66 046) 4.8% (4.9%)

VRAGDSW 0.10 89.5 (100) 60.9 ( 82.2) 39 081.8 (39 780) 2.9% (2.9%)
0.05 115.1 (129) 104.8 ( 152.5) 35 961.4 (36 649) 2.6% (2.7%)
0.01 200.3 (232) 342.8 ( 523.6) 33 370.8 (34 058) 2.5% (2.5%)

VRAGDSW−S 0.10 74.9 ( 88) 42.8 ( 59.6) 44 045.9 (44 677) 3.2% (3.3%)
0.05 97.1 (112) 72.9 ( 103.5) 39 076.9 (39 730) 2.9% (2.9%)
0.01 167.8 (199) 244.7 ( 469.9) 35 399.8 (36 137) 2.6% (2.7%)

the robustness of the methods; cf. Table 5. Despite comparable number of iterations736
and condition numbers, the coarse space dimensions of RAGDSW(–S) are smaller737
by a factor of 1.6 compared to those of AGDSW(–S) (at an equal tolerance).738
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