2,192 research outputs found

    Application of ERTS-1 Imagery to Flood Inundation Mapping

    Get PDF
    Application of ERTS-1 imagery to flood inundation mapping in East and West Nishnabotna basins of southwestern Iow

    Spin-charge separation in Aharonov-Bohm rings of interacting electrons

    Get PDF
    We investigate the properties of strongly correlated electronic models on a flux-threaded ring connected to semi-infinite free-electron leads. The interference pattern of such an Aharonov-Bohm ring shows sharp dips at certain flux values, determined by the filling, which are a consequence of spin-charge separation in a nanoscopic system.Comment: 4 pages, 3 figures, to appear in Phys. Rev. Let

    Method and apparatus for slicing crystals

    Get PDF
    The crystal slicing method is described as follows. A crystal is sliced in a plane parallel to flat, opposed parallel end faces of the crystal. The end faces of the crystal are gripped by a pair of opposed, perforated platens of a pair of vacuum chambers, one of which is translatable relative to the other. A blade cuts the crystal through the desired plane. A spring biases one of the vacuum chambers away from the other vacuum chamber while both of the faces are gripped by the vacuum chambers and the blade is cleaving the crystal. A sliced portion of the crystal gripped by one of the vacuum chambers is pulled away from the remainder of the crystal gripped by the second vacuum chamber when the crystal was cleaved by the blade through the plane

    Spin order in the one-dimensional Kondo and Hund lattices

    Get PDF
    We study numerically the one-dimensional Kondo and Hund lattices consisting of localized spins interacting antiferro or ferromagnetically with the itinerant electrons, respectively. Using the Density Matrix Renormalization Group we find, for both models and in the small coupling regime, the existence of new magnetic phases where the local spins order forming ferromagnetic islands coupled antiferromagnetically. Furthermore, by increasing the interaction parameter J|J| we find that this order evolves toward the ferromagnetic regime through a spiral-like phase with longer characteristic wave lengths. These results shed new light on the zero temperature magnetic phase diagram for these models.Comment: PRL, to appea

    Detection of topological transitions by transport through molecules and nanodevices

    Get PDF
    We analyze the phase transitions of an interacting electronic system weakly coupled to free-electron leads by considering its zero-bias conductance. This is expressed in terms of two effective impurity models for the cases with and without spin degeneracy. We demonstrate using the half-filled ionic Hubbard ring that the weight of the first conductance peak as a function of external flux or of the difference in gate voltages between even and odd sites allows one to identify the topological charge transition between a correlated insulator and a band insulator.Comment: 4 pages, 5 figures, to appear in Phys. Rev. Let

    Estimation of Dietary Iron Bioavailability from Food Iron Intake and Iron Status

    Get PDF
    Currently there are no satisfactory methods for estimating dietary iron absorption (bioavailability) at a population level, but this is essential for deriving dietary reference values using the factorial approach. The aim of this work was to develop a novel approach for estimating dietary iron absorption using a population sample from a sub-section of the UK National Diet and Nutrition Survey (NDNS). Data were analyzed in 873 subjects from the 2000–2001 adult cohort of the NDNS, for whom both dietary intake data and hematological measures (hemoglobin and serum ferritin (SF) concentrations) were available. There were 495 men aged 19–64 y (mean age 42.7±12.1 y) and 378 pre-menopausal women (mean age 35.7±8.2 y). Individual dietary iron requirements were estimated using the Institute of Medicine calculations. A full probability approach was then applied to estimate the prevalence of dietary intakes that were insufficient to meet the needs of the men and women separately, based on their estimated daily iron intake and a series of absorption values ranging from 1–40%. The prevalence of SF concentrations below selected cut-off values (indicating that absorption was not high enough to maintain iron stores) was derived from individual SF concentrations. An estimate of dietary iron absorption required to maintain specified SF values was then calculated by matching the observed prevalence of insufficiency with the prevalence predicted for the series of absorption estimates. Mean daily dietary iron intakes were 13.5 mg for men and 9.8 mg for women. Mean calculated dietary absorption was 8% in men (50th percentile for SF 85 µg/L) and 17% in women (50th percentile for SF 38 µg/L). At a ferritin level of 45 µg/L estimated absorption was similar in men (14%) and women (13%). This new method can be used to calculate dietary iron absorption at a population level using data describing total iron intake and SF concentration

    The contribution of diet and genotype to iron status in women:a classical twin study

    Get PDF
    This is the first published report examining the combined effect of diet and genotype on body iron content using a classical twin study design. The aim of this study was to determine the relative contribution of genetic and environmental factors in determining iron status. The population was comprised of 200 BMI- and age-matched pairs of MZ and DZ healthy twins, characterised for habitual diet and 15 iron-related candidate genetic markers. Variance components analysis demonstrated that the heritability of serum ferritin (SF) and soluble transferrin receptor was 44% and 54% respectively. Measured single nucleotide polymorphisms explained 5% and selected dietary factors 6% of the variance in iron status; there was a negative association between calcium intake and body iron (p = 0.02) and SF (p = 0.04)

    Hole dynamics in generalized spin backgrounds in infinite dimensions

    Full text link
    We calculate the dynamical behaviour of a hole in various spin backgrounds in infinite dimensions, where it can be determined exactly. We consider hypercubic lattices with two different types of spin backgrounds. On one hand we study an ensemble of spin configurations with an arbitrary spin probability on each sublattice. This model corresponds to a thermal average over all spin configurations in the presence of staggered or uniform magnetic fields. On the other hand we consider a definite spin state characterized by the angle between the spins on different sublattices, i.e a classical spin system in an external magnetic field. When spin fluctuations are considered, this model describes the physics of unpaired particles in strong coupling superconductors.Comment: Accepted in Phys. Rev. B. 18 pages of text (1 fig. included) in Latex + 2 figures in uuencoded form containing the 2 postscripts (mailed separately

    Parameterization of mixed layer eddies. III: Implementation and impact in global ocean climate simulations

    Get PDF
    A parameterization for the restratification by finite-amplitude, submesoscale, mixed layer eddies, formulated as an overturning streamfunction, has been recently proposed to approximate eddy fluxes of density and other tracers. Here, the technicalities of implementing the parameterization in the coarse-resolution ocean component of global climate models are made explicit, and the primary impacts on model solutions of implementing the parameterization are discussed. Three global ocean general circulation models including this parameterization are contrasted with control simulations lacking the parameterization. The MLE parameterization behaves as expected and fairly consistently in models differing in discretization, boundary layer mixing, resolution, and other parameterizations. The primary impact of the parameterization is a shoaling of the mixed layer, with the largest effect in polar winter regions. Secondary impacts include strengthening the Atlantic meridional overturning while reducing its variability, reducing CFC and tracer ventilation, modest changes to sea surface temperature and air–sea fluxes, and an apparent reduction of sea ice basal melting.National Science Foundation (U.S.) (Grant OCE-0612143)National Science Foundation (U.S.) (Grant OCE-0612059)National Science Foundation (U.S.) (Grant OCE-0825376)National Science Foundation (U.S.) (Grant DMS-0855010)National Science Foundation (U.S.) (Grant OCE-0934737

    Numerical renormalization group study of the correlation functions of the antiferromagnetic spin-12\frac{1}{2} Heisenberg chain

    Get PDF
    We use the density-matrix renormalization group technique developed by White \cite{white} to calculate the spin correlation functions =(1)lω(l,N)=(-1)^l \omega(l,N) for isotropic Heisenberg rings up to N=70N=70 sites. The correlation functions for large ll and NN are found to obey the scaling relation ω(l,N)=ω(l,)fXYα(l/N)\omega(l,N)=\omega(l,\infty)f_{XY}^{\alpha} (l/N) proposed by Kaplan et al. \cite{horsch} , which is used to determine ω(l,)\omega(l,\infty). The asymptotic correlation function ω(l,)\omega(l,\infty) and the magnetic structure factor S(q=π)S(q=\pi) show logarithmic corrections consistent with ω(l,)alncl/l\omega(l,\infty)\sim a\sqrt{\ln{cl}}/l, where cc is related to the cut-off dependent coupling constant geff(l0)=1/ln(cl0)g_{eff}(l_0)=1/\ln(cl_0), as predicted by field theoretical treatments.Comment: Accepted in Phys. Rev. B. 4 pages of text in Latex + 5 figures in uuencoded form containing the 5 postscripts (mailed separately
    corecore