157 research outputs found

    Inclusion at Scale: Deploying a Community-Driven Moderation Intervention on Twitch

    Get PDF
    Harassment, especially of marginalized individuals, on networked gaming and social media platforms has been identified as a significant issue, yet few HCI practitioners have attempted to create interventions tackling toxicity online. Aligning ourselves with the growing cohort of design activists, we present a case study of the GLHF pledge, an interactive public awareness campaign promoting positivity in video game live streaming. We discuss the design and deployment of a community-driven moderation intervention for GLHF, intended to empower the inclusive communities emerging on Twitch. After offering a preliminary report on the effects we have observed based on the more than 370,000 gamers who have participated to date, the paper concludes with a reflection on the challenges and opportunities of using design activism to positively intervene in large-scale media platforms

    Stress Field Interactions Between Overlapping Shield Volcanoes : Borehole Breakout Evidence From the Island of Hawai'i, USA

    Get PDF
    Acknowledgments: This PTA2 borehole investigation was funded by the International Continental Scientific Drilling Program (ICDP) and by VMAPP (Volcanic Margin Petroleum Prospectivity) project (VBPR/DougalEARTH/TGS) in collaboration with the Humu'ula Groundwater Research Project. D. A. J. and S. P. are partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). We thank Marco Groh for the logging operations. We thank two anonymous reviewers for the comments and suggestions. We are particularly grateful to the Associate Editor Mike Poland for his valuable comments and his critical review that greatly improved the manuscript.Peer reviewedPublisher PD

    A Criterion for Brittle Failure of Rocks Using the Theory of Critical Distances

    Get PDF
    This paper presents a new analytical criterion for brittle failure of rocks and heavily overconsolidated soils. Griffith’s model of a randomly oriented defect under a biaxial stress state is used to keep the criterion simple. The Griffith’s criterion is improved because the maximum tensile strength is not evaluated at the boundary of the defect but at a certain distance from the boundary, known as the critical distance. This fracture criterion is known as the Point Method, and is part of the Theory of Critical Distances, which is utilized in fracture mechanics. The proposed failure criterion has two parameters: the inherent tensile strength, ó0, and the ratio of the half-length of the initial crack/flaw to the critical distance, a/L. These parameters are difficult to measure but they may be correlated with the uniaxial compressive and tensile strengths, óc and ót. The proposed criterion is able to reproduce the common range of strength ratios for rocks and heavily overconsolidated soils (óc/ót=3-50) and the influence of several microstructural rock properties, such as texture and porosity. Good agreement with laboratory tests reported in the literature is found for tensile and low confining stresses.The work presented was initiated during a research project on “Structural integrity assessments of notch-type defects", for the Spanish Ministry of Science and Innovation (Ref.: MAT2010-15721)

    New Experimental Equipment Recreating Geo-Reservoir Conditions in Large, Fractured, Porous Samples to Investigate Coupled Thermal, Hydraulic and Polyaxial Stress Processes

    Get PDF
    Abstract Use of the subsurface for energy resources (enhanced geothermal systems, conventional and unconventional hydrocarbons), or for storage of waste (CO2, radioactive), requires the prediction of how fluids and the fractured porous rock mass interact. The GREAT cell (Geo-Reservoir Experimental Analogue Technology) is designed to recreate subsurface conditions in the laboratory to a depth of 3.5 km on 200 mm diameter rock samples containing fracture networks, thereby enabling these predictions to be validated. The cell represents an important new development in experimental technology, uniquely creating a truly polyaxial rotatable stress field, facilitating fluid flow through samples, and employing state of the art fibre optic strain sensing, capable of thousands of detailed measurements per hour. The cell’s mechanical and hydraulic operation is demonstrated by applying multiple continuous orientations of principal stress to a homogeneous benchmark sample, and to a fractured sample with a dipole borehole fluid fracture flow experiment, with backpressure. Sample strain for multiple stress orientations is compared to numerical simulations validating the operation of the cell. Fracture permeability as a function of the direction and magnitude of the stress field is presented. Such experiments were not possible to date using current state of the art geotechnical equipment

    Incremental grouping of image elements in vision

    Get PDF
    One important task for the visual system is to group image elements that belong to an object and to segregate them from other objects and the background. We here present an incremental grouping theory (IGT) that addresses the role of object-based attention in perceptual grouping at a psychological level and, at the same time, outlines the mechanisms for grouping at the neurophysiological level. The IGT proposes that there are two processes for perceptual grouping. The first process is base grouping and relies on neurons that are tuned to feature conjunctions. Base grouping is fast and occurs in parallel across the visual scene, but not all possible feature conjunctions can be coded as base groupings. If there are no neurons tuned to the relevant feature conjunctions, a second process called incremental grouping comes into play. Incremental grouping is a time-consuming and capacity-limited process that requires the gradual spread of enhanced neuronal activity across the representation of an object in the visual cortex. The spread of enhanced neuronal activity corresponds to the labeling of image elements with object-based attention

    Strength and deformability of granodiorite core from the SAFOD drillhole (San Andreas Fault Observatory at Depth) under triaxial stress conditions

    No full text
    see Abstract VolumeIstituto Nazionale di Geofisica e Vulcanologia, Italy (INGV) Centre National de la Recherche Scientifique (CNRS) ExxonMobil Upstream Research CompanyUnpublishedErice, Italyope
    corecore