1,238 research outputs found

    Application of the RMF mass model to the r-process and the influence of mass uncertainties

    Full text link
    A new mass table calculated by the relativistic mean field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. R-process calculations using the FRDM, ETFSI-Q and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in detail in the r-process simulations.Comment: to be published in Phys. Rev. C, 22 pages, 9 figure

    Projectile fragmentation of 129Xe at Elab=790 AMeV

    Full text link
    We have measured production yields and longitudinal momentum distributions of projectile-like fragments in the reaction 129Xe + 27Al at an energy of Elab=790 AMeV. Production cross sections higher than expected from systematics were observed for nuclei in the neutron-deficient tails of the isotopic distributions. A comparison with previously measured data from the fragmentation of 136Xe ions shows that the production yields strongly depend on the neutron excess of the projectile with respect to the line of beta-stability. The momentum distributions exhibit a dependence on the fragment neutron-to-proton ratio in isobaric chains, which was not expected from systematics so far. This can be interpreted by a higher excitation of the projectile during the formation of neutron-deficient fragments.Comment: 21 pages, 8 figures, 1 tabl

    Proton drip-line nuclei in relativistic mean-field theory

    Get PDF
    The position of the two-proton drip line has been calculated for even-even nuclei with 10Z8210 \leq Z \leq 82 in the framework of the relativistic mean-field (RMF) theory. The current model uses the NL3 effective interaction in the mean-field Lagrangian and describes pairing correlations in the Bardeen-Cooper-Schrieffer (BCS) formalism. The predictions of the RMF theory are compared with those of the Hartree-Fock+BCS approach (with effective force Skyrme SIII) and the finite-range droplet model (FRDM) and with the available experimental information.Comment: 18 pages, RevTeX, 2 p.s figures, to appear in Phys. Rev.

    Evaporation residues produced in spallation of 208Pb by protons at 500A MeV

    Full text link
    The production cross sections of fragmentation-evaporation residues in the reaction Pb+p at 500A MeV have been measured using the inverse-kinematics method and the FRS spectrometer (GSI). Fragments were identified in nuclear charge using ionisation chambers. The mass identification was performed event-by-event using the B-rho - TOF - Delta-E technique. Although partially-unresolved ionic charge states induced an ambiguity on the mass of some heavy fragments, production rates could be obtained with a high accuracy by systematically accounting for the polluting ionic charge states. The contribution of multiple reactions in the target was subtracted using a new, partly self-consistent code. The isobaric distributions are found to have a shape very close to the one observed in experiments at higher energy. Kinematic properties of the fragments were also measured. The total and the isotopic cross sections, including charge-pickup cross sections, are in good agreement with previous measurements. The data are discussed in the light of previous spallation measurements, especially on lead at 1 GeV

    Measurement of nuclide cross-sections of spallation residues in 1 A GeV 238U + proton collisions

    Full text link
    The production of heavy nuclides from the spallation-evaporation reaction of 238U induced by 1 GeV protons was studied in inverse kinematics. The evaporation residues from tungsten to uranium were identified in-flight in mass and atomic number. Their production cross-sections and their momentum distributions were determined. The data are compared with empirical systematics. A comparison with previous results from the spallation of 208Pb and 197Au reveals the strong influence of fission in the spallation of 238U.Comment: 20 pages, 10 figures, background information at http://www-wnt.gsi.de/kschmidt

    Low-energy cross section of the 7Be(p,g)8B solar fusion reaction from Coulomb dissociation of 8B

    Full text link
    Final results from an exclusive measurement of the Coulomb breakup of 8B into 7Be+p at 254 A MeV are reported. Energy-differential Coulomb-breakup cross sections are analyzed using a potential model of 8B and first-order perturbation theory. The deduced astrophysical S_17 factors are in good agreement with the most recent direct 7Be(p,gamma)8B measurements and follow closely the energy dependence predicted by the cluster-model description of 8B by Descouvemont. We extract a zero-energy S_17 factor of 20.6 +- 0.8 (stat) +- 1.2 (syst) eV b.Comment: 14 pages including 16 figures, LaTeX, accepted for publication in Physical Review C. Minor changes in text and layou

    On the discovery of doubly-magic 48^{48}Ni

    Full text link
    The paper reports on the first observation of doubly-magic Nickel-48 in an experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42 isotopes were observed. This opens the possibility to search for two-proton emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies

    Full text link
    The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertainty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501 http://link.aps.org/abstract/PRL/v95/e04250
    corecore