1,085 research outputs found

    Z-petawatt driven ion beam radiography development.

    Get PDF
    Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser

    Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140^{140}Pr and 142^{142}Pm Ions

    Get PDF
    We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like 140^{140}Pr59+^{59+} and 142^{142}Pm60+^{60+} ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.Comment: 12 pages, 5 figure

    Application of the RMF mass model to the r-process and the influence of mass uncertainties

    Full text link
    A new mass table calculated by the relativistic mean field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. R-process calculations using the FRDM, ETFSI-Q and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in detail in the r-process simulations.Comment: to be published in Phys. Rev. C, 22 pages, 9 figure

    Projectile fragmentation of 129Xe at Elab=790 AMeV

    Full text link
    We have measured production yields and longitudinal momentum distributions of projectile-like fragments in the reaction 129Xe + 27Al at an energy of Elab=790 AMeV. Production cross sections higher than expected from systematics were observed for nuclei in the neutron-deficient tails of the isotopic distributions. A comparison with previously measured data from the fragmentation of 136Xe ions shows that the production yields strongly depend on the neutron excess of the projectile with respect to the line of beta-stability. The momentum distributions exhibit a dependence on the fragment neutron-to-proton ratio in isobaric chains, which was not expected from systematics so far. This can be interpreted by a higher excitation of the projectile during the formation of neutron-deficient fragments.Comment: 21 pages, 8 figures, 1 tabl

    Discovery and Cross-Section Measurement of Neutron-Rich Isotopes in the Element Range from Neodymium to Platinum at the FRS

    Get PDF
    With a new detector setup and the high-resolution performance of the fragment separator FRS at GSI we discovered 57 new isotopes in the atomic number range of 60Z78\leq Z \leq 78: \nuc{159-161}{Nb}, \nuc{160-163}{Pm}, \nuc{163-166}Sm, \nuc{167-168}{Eu}, \nuc{167-171}{Gd}, \nuc{169-171}{Tb}, \nuc{171-174}{Dy}, \nuc{173-176}{Ho}, \nuc{176-178}{Er}, \nuc{178-181}{Tm}, \nuc{183-185}{Yb}, \nuc{187-188}{Lu}, \nuc{191}{Hf}, \nuc{193-194}{Ta}, \nuc{196-197}{W}, \nuc{199-200}{Re}, \nuc{201-203}{Os}, \nuc{204-205}{Ir} and \nuc{206-209}{Pt}. The new isotopes have been unambiguously identified in reactions with a 238^{238}U beam impinging on a Be target at 1 GeV/u. The isotopic production cross-section for the new isotopes have been measured and compared with predictions of different model calculations. In general, the ABRABLA and COFRA models agree better than a factor of two with the new data, whereas the semiempirical EPAX model deviates much more. Projectile fragmentation is the dominant reaction creating the new isotopes, whereas fission contributes significantly only up to about the element holmium.Comment: 9 pages, 4 figure

    On the discovery of doubly-magic 48^{48}Ni

    Full text link
    The paper reports on the first observation of doubly-magic Nickel-48 in an experimental at the SISSI/LISE3 facility of GANIL. Four Nickel-48 isotopes were identified. In addition, roughly 100 Nickel-49, 50 Iron-45, and 290 Chromium-42 isotopes were observed. This opens the possibility to search for two-proton emission from these nuclei.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Let

    A Measurement of the Coulomb Dissociation of 8B at 254 MeV/nucleon and the 8B Solar Neutrino Flux

    Get PDF
    We have measured the Coulomb dissociation of 8B into 7Be and proton at 254 MeV/nucleon using a large-acceptance focusing spectrometer. The astrophysical S17 factor for the 7Be(p,gamma)8B reaction at E{c.m.} = 0.25-2.78 MeV is deduced yielding S17(0)=20.6 \pm 1.2 (exp.) \pm 1.0 (theo.) eV-b. This result agrees with the presently adopted zero-energy S17 factor obtained in direct-reaction measurements and with the results of other Coulomb-dissociation studies performed at 46.5 and 51.2 MeV/nucleon.Comment: paper to be published in Phys. Rev. Lett. 3 figures. New Version fixes formatting problems with the figures only. There are no other change

    Measurement of E2 Transitions in the Coulomb Dissociation of 8B

    Full text link
    In an effort to understand the implications of Coulomb dissociation experiments for the determination of the 7Be(p,gamma)8B reaction rate, longitudinal momentum distributions of 7Be fragments produced in the Coulomb dissociation of 44 and 81 MeV/nucleon 8B beams on a Pb target were measured. These distributions are characterized by asymmetries interpreted as the result of interference between E1 and E2 transition amplitudes in the Coulomb breakup. At the lower beam energy, both the asymmetries and the measured cross sections are well reproduced by perturbation theory calculations, allowing a determination of the E2 strength.Comment: 8 pages, 3 figure
    corecore