400 research outputs found
Global burden of human brucellosis : a systematic review of disease frequency
BACKGROUND: This report presents a systematic review of scientific literature published between 1990-2010 relating to the frequency of human brucellosis, commissioned by WHO. The objectives were to identify high quality disease incidence data to complement existing knowledge of the global disease burden and, ultimately, to contribute towards the calculation of a Disability-Adjusted Life Years (DALY) estimate for brucellosis.METHODS/PRINCIPAL FINDINGS: Thirty three databases were searched, identifying 2,385 articles relating to human brucellosis. Based on strict screening criteria, 60 studies were selected for quality assessment, of which only 29 were of sufficient quality for data analysis. Data were only available from 15 countries in the regions of Northern Africa and Middle East, Western Europe, Central and South America, Sub-Saharan Africa, and Central Asia. Half of the studies presented incidence data, six of which were longitudinal prospective studies, and half presented seroprevalence data which were converted to incidence rates. Brucellosis incidence varied widely between, and within, countries. Although study biases cannot be ruled out, demographic, occupational, and socioeconomic factors likely play a role. Aggregated data at national or regional levels do not capture these complexities of disease dynamics and, consequently, at-risk populations or areas may be overlooked. In many brucellosis-endemic countries, health systems are weak and passively-acquired official data underestimate the true disease burden.CONCLUSIONS: High quality research is essential for an accurate assessment of disease burden, particularly in Eastern Europe, the Asia-Pacific, Central and South America and Africa where data are lacking. Providing formal epidemiological and statistical training to researchers is essential for improving study quality. An integrated approach to disease surveillance involving both human health and veterinary services would allow a better understand of disease dynamics at the animal-human interface, as well as a more cost-effective utilisation of resources
Open-access mega-journals: A bibliometric profile
In this paper we present the first comprehensive bibliometric analysis of eleven open-access mega-journals (OAMJs). OAMJs are a relatively recent phenomenon, and have been characterised as having four key characteristics: large size; broad disciplinary scope; a GoldOA business model; and a peer-review policy that seeks to determine only the scientific soundness of the research rather than evaluate the novelty or significance of the work. Our investigation focuses on four key modes of analysis: journal outputs (the number of articles
published and changes in output over time); OAMJ author characteristics (nationalities and institutional affiliations); subject areas (the disciplinary scope of OAMJs, and variations in
sub-disciplinary output); and citation profiles (the citation distributions of each OAMJ, and the impact of citing journals). We found that while the total output of the eleven megajournals
grew by 14.9% between 2014 and 2015, this growth is largely attributable to the increased output of Scientific Reports and Medicine. We also found substantial variation in the geographical distribution of authors. Several journals have a relatively high proportion of Chinese authors, and we suggest this may be linked to these journals’ high Journal Impact
Factors (JIFs). The mega-journals were also found to vary in subject scope, with several journals publishing disproportionately high numbers of articles in certain sub-disciplines. Our citation analsysis offers support for Björk & Catani’s suggestion that OAMJs’s citation distributions can be similar to those of traditional journals, while noting considerable
variation in citation rates across the eleven titles. We conclude that while the OAMJ term is useful as a means of grouping journals which share a set of key characteristics, there is no
such thing as a “typical” mega-journal, and we suggest several areas for additional research that might help us better understand the current and future role of OAMJs in scholarly
communication
CT694 and pgp3 as Serological Tools for Monitoring Trachoma Programs.
Defining endpoints for trachoma programs can be a challenge as clinical signs of infection may persist in the absence of detectable bacteria. Antibody-based tests may provide an alternative testing strategy for surveillance during terminal phases of the program. Antibody-based assays, in particular ELISAs, have been shown to be useful to document C. trachomatis genital infections, but have not been explored extensively for ocular C. trachomatis infections. An antibody-based multiplex assay was used to test two C. trachomatis antigens, pgp3 and CT694, for detection of trachoma antibodies in bloodspots from Tanzanian children (n = 160) collected after multiple rounds of mass azithromycin treatment. Using samples from C. trachomatis-positive (by PCR) children from Tanzania (n = 11) and control sera from a non-endemic group of U.S. children (n = 122), IgG responses to both pgp3 and CT694 were determined to be 91% sensitive and 98% specific. Antibody responses of Tanzanian children were analyzed with regard to clinical trachoma, PCR positivity, and age. In general, children with more intense ocular pathology (TF/TI = 2 or most severe) had a higher median antibody response to pgp3 (p = 0.0041) and CT694 (p = 0.0282) than those with normal exams (TF/TI = 0). However, 44% of children with no ocular pathology tested positive for antibody, suggesting prior infection. The median titer of antibody responses for children less than three years of age was significantly lower than those of older children. (p<0.0001 for both antigens). The antibody-based multiplex assay is a sensitive and specific additional tool for evaluating trachoma transmission. The assay can also be expanded to include antigens representing different diseases, allowing for a robust assay for monitoring across NTD programs
Recommended from our members
An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus
Abstract
Background: Rapeseed (Brassica napus L.) and soybean (Glycine max L.) seeds are rich in both protein and oil, which
are major sources of biofuels and nutrition. Although the difference in seed oil content between soybean (~ 20%) and
rapeseed (~ 40%) exists, little is known about its underlying molecular mechanism.
Results: An integrated omics analysis was performed in soybean, rapeseed, Arabidopsis (Arabidopsis thaliana L. Heynh),
and sesame (Sesamum indicum L.), based on Arabidopsis acyl-lipid metabolism- and carbon metabolism-related genes.
As a result, candidate genes and their transcription factors and microRNAs, along with phylogenetic analysis and
co-expression network analysis of the PEPC gene family, were found to be largely associated with the difference
between the two species. First, three soybean genes (Glyma.13G148600, Glyma.13G207900 and Glyma.12G122900)
co-expressed with GmPEPC1 are specifically enriched during seed storage protein accumulation stages, while the
expression of BnPEPC1 is putatively inhibited by bna-miR169, and two genes BnSTKA and BnCKII are co-expressed
with BnPEPC1 and are specifically associated with plant circadian rhythm, which are related to seed oil biosynthesis. Then,
in de novo fatty acid synthesis there are rapeseed-specific genes encoding subunits β-CT (BnaC05g37990D) and BCCP1
(BnaA03g06000D) of heterogeneous ACCase, which could interfere with synthesis rate, and β-CT is positively regulated by
four transcription factors (BnaA01g37250D, BnaA02g26190D, BnaC01g01040D and BnaC07g21470D). In triglyceride synthesis,
GmLPAAT2 is putatively inhibited by three miRNAs (gma-miR171, gma-miR1516 and gma-miR5775). Finally, in rapeseed
there was evidence for the expansion of gene families, CALO, OBO and STERO, related to lipid storage, and
the contraction of gene families, LOX, LAH and HSI2, related to oil degradation.
Conclusions: The molecular mechanisms associated with differences in seed oil content provide the basis for
future breeding efforts to improve seed oil content
Composition and Anticoagulant Potential of Chondroitin Sulfate and Dermatan Sulfate from Inedible Parts of Garfish (Belone belone)
Glycosaminoglycans (GAGs) play a crucial role due to their significant biomedical functions. Chondroitin sulfate (CS) and dermatan sulfate (DS), the main representative family of GAGs, were extracted and purified from garfish (Belone belone) by-products, i.e., skin (GSB), bones (GCB), and heads (GHB), and their composition and anticoagulant activity were investigated. CS/DS were purified by ion-exchange chromatography with yields of 8.1% for heads, 3.7% for skin, and 1.4% for bones. Cellulose acetate electrophoresis was also explored for analyzing the extracted CS/DS. Interestingly, GHB, GSB, and GCB possessed sulfate contents of 21 ± 2%, 20 ± 1%, and 20 ± 1.5%, respectively. Physico-chemical analysis showed that there were no significant differences (p > 0.05) between the variances for sulfate, uronic acid, and total sugars in the GAGs extracted from the different parts of fish. Disaccharide analysis by SAX-HPLC showed that the GSB and GCB were predominately composed of ΔDi-4S [ΔUA-GalNAc 6S] (74.78% and 69.22%, respectively) and ΔDi-2,4S [ΔUA2S-GalNAc 4S] (10.92% and 6.55%, respectively). However, the GHB consisted of 25.55% ΔDi-6S [ΔUA-GalNAc 6S] and 6.28% ΔDi-2,6S [ΔUA2S-GalNAc 4S]. Moreover, classical anticoagulation tests were also used to measure their anticoagulant properties in vitro, which included the activated partial thromboplastin time, prothrombin time, and thrombin time. The CS/DS isolated from garfish by-products exhibited potent anticoagulant effects. The purified CS/DS showed exceptional anticoagulant properties according to this research and can be considered as a new agent with anticoagulant properties
World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010
Genetic variability, chemotype distribution, and aggressiveness of Fusarium culmorum on durum wheat in Tunisia
Fusarium culmorum is the most commonly reported root rot pathogen in Tunisian durum wheat. Isolates of the pathogen from four durum wheat growing areas in the north of Tunisia were analyzed for their chemotypes. Two chemotypes were detected at unequal abundance (96% of 3-ADON and 4% of NIV). Distribution of a SNP mutation located at the position 34 bp after the first exon of the EF-1α partial sequence was analysed, to verify whether the haplotype was specifically associated to Fusarium root rot. A and T haplotypes were homogeneously distributed in three different Tunisian regions (Mateur, Beja and Bousalem) but not for the region of Bizerte, from which greatest number of A haplotype strains were detected. The isolates were tested for their virulence under glasshouse conditions, and a mean of 91% of crown and root infection was observed. Chemotype influenced virulence, but there was no significant influence of the geographical origin or haplotype on virulence. The distribution of three inter simple sequence repeats (ISSR) was examined, to better understand the structure of F. culmorum populations in Tunisia. A total of 27 fragments were obtained with eight polymorphic bands. Cluster analysis showed a high level of similarity between isolates. Analysis of molecular variance confirmed that there was little genetic differentiation among F. culmorum strains from different locations
Rhaponticum acaule (L) DC essential oil: chemical composition, in vitro antioxidant and enzyme inhibition properties
Background: α-glucosidase is a therapeutic target for diabetes mellitus (DM) and α-glucosidase inhibitors play a
vital role in the treatments for the disease. Furthermore, xanthine oxidase (XO) is a key enzyme that catalyzes
hypoxanthine and xanthine to uric acid which at high levels can lead to hyperuricemia which is an important cause
of gout. Pancreatic lipase (PL) secreted into the duodenum plays a key role in the digestion and absorption of fats.
For its importance in lipid digestion, PL represents an attractive target for obesity prevention.
Methods: The flowers essential oil of Rhaponticum acaule (L) DC (R. acaule) was characterized using gas
chromatography-mass spectrometry (GC-MS). The antioxidant activities of R. acaule essential oil (RaEO) were also
determined using 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS), reducing power,
phosphomolybdenum, and DNA nicking assays. The inhibitory power of RaEO against α-glucosidase, xanthine
oxidase and pancreatic lipase was evaluated. Enzyme kinetic studies using Michaelis-Menten and the derived
Lineweaver-Burk (LB) plots were performed to understand the possible mechanism of inhibition exercised by the
components of this essential oil.
Results: The result revealed the presence of 26 compounds (97.4%). The main constituents include germacrene D
(49.2%), methyl eugenol (8.3%), (E)-β-ionone (6.2%), β-caryophyllene (5.7%), (E,E)-α-farnesene (4.2%),
bicyclogermacrene (4.1%) and (Z)-α-bisabolene (3.7%). The kinetic inhibition study showed that the essential oil
demonstrated a strong α-glucosidase inhibiton and it was a mixed inhibitor. On the other hand, our results
evidenced that this oil exhibited important xanthine oxidase inhibitory effect, behaving as a non-competitive
inhibitor. The essential oil inhibited the turkey pancreatic lipase, with maximum inhibition of 80% achieved at
2 mg/mL. Furthermore, the inhibition of turkey pancreatic lipase by RaEO was an irreversible one.
Conclusion: The results revealed that the RaEO is a new promising potential source of antioxidant compounds,
endowed with good practical applications for human health.
Keywords: α-glucosidase, Antioxidant activity, Chemical composition, Pancreatic lipase inhibition, Rhaponticum
acaule essential oil, Xanthine oxidase
Anti-neuroinflammatory effects of GPR55 antagonists in LPS-activated primary microglial cells
Background: Neuroinflammation plays a vital role in Alzheimer’s disease and other neurodegenerative conditions. Microglia are the resident mononuclear immune cells of the central nervous system, and they play essential roles in the maintenance of homeostasis and responses to neuroinflammation. The orphan G-protein-coupled receptor 55 (GPR55) has been reported to modulate inflammation and is expressed in immune cells such as monocytes and microglia. However, its effects on neuroinflammation, mainly on the production of members of the arachidonic acid pathway in activated microglia, have not been elucidated in detail.
Methods: In this present study, a series of coumarin derivatives, that exhibit GPR55 antagonism properties, were designed. The effects of these compounds on members of the arachidonic acid cascade were studied in lipopolysaccharide (LPS)-treated primary rat microglia using Western blot, qPCR, and ELISA.
Results: We demonstrate here that the various compounds with GPR55 antagonistic activities significantly inhibited the release of PGE₂ in primary microglia. The inhibition of LPS-induced PGE₂ release by the most potent candidate KIT 17 was partially dependent on reduced protein synthesis of mPGES-1 and COX-2. KIT 17 did not affect any key enzyme involved on the endocannabinoid system. We furthermore show that microglia expressed GPR55 and that a synthetic antagonist of the GPR receptor (ML193) demonstrated the same effect of the KIT 17 on the inhibition of PGE₂.
Conclusions: Our results suggest that KIT 17 is acting as an inverse agonist on GPR55 independent of the endocannabinoid system. Targeting GPR55 might be a new therapeutic option to treat neurodegenerative diseases with a neuroinflammatory background such as Alzheimer’s disease, Parkinson, and multiple sclerosis (MS)
Genetic variability, chemotype distribution, and aggressiveness of Fusarium culmorum on durum wheat in Tunisia
Fusarium culmorum is the most commonly reported root rot pathogen in Tunisian durum wheat. Isolates of the pathogen from four durum wheat growing areas in the north of Tunisia were analyzed for their chemotypes. Two chemotypes were detected at unequal abundance (96% of 3-ADON and 4% of NIV). Distribution of a SNP mutation located at the position 34 bp after the first exon of the EF-1\u3b1 partial sequence was analysed, to verify whether the haplotype was specifically associated to Fusarium root rot. A and T haplotypes were homogeneously distributed in three different Tunisian regions (Mateur, Beja and Bousalem) but not for the region of Bizerte, from which greatest number of A haplotype strains were detected. The isolates were tested for their virulence under glasshouse conditions, and a mean of 91% of crown and root infection was observed. Chemotype influenced virulence, but there was no significant influence of the geographical origin or haplotype on virulence. The distribution of three inter simple sequence repeats (ISSR) was examined, to better understand the structure of F. culmorum populations in Tunisia. A total of 27 fragments were obtained with eight polymorphic bands. Cluster analysis showed a high level of similarity between isolates. Analysis of molecular variance confirmed that there was little genetic differentiation among F. culmorum strains from different locations
- …
