890 research outputs found
The Molecular Gas Density in Galaxy Centers and How It Connects to Bulges
In this paper we present gas density, star formation rate, stellar masses,
and bulge disk decompositions for a sample of 60 galaxies. Our sample is the
combined sample of BIMA SONG, CARMA STING, and PdBI NUGA surveys. We study the
effect of using CO-to-H_2 conversion factors that depend on the CO surface
brightness, and also that of correcting star formation rates for diffuse
emission from old stellar populations. We estimate that star formation rates in
bulges are typically lower by 20% when correcting for diffuse emission. We find
that over half of the galaxies in our sample have molecular gas surface density
>100 M_sun pc^-2. We find a trend between gas density of bulges and bulge
Sersic index; bulges with lower Sersic index have higher gas density. Those
bulges with low Sersic index (pseudobulges) have gas fractions that are similar
to that of disks. We also find that there is a strong correlation between
bulges with the highest gas surface density and the galaxy being barred.
However, we also find that classical bulges with low gas surface density can be
barred as well. Our results suggest that understanding the connection between
the central surface density of gas in disk galaxies and the presence of bars
should also take into account the total gas content of the galaxy and/or bulge
Sersic index. Indeed, we find that high bulge Sersic index is the best
predictor of low gas density inside the bulge (not barredness of the disk).
Finally, we show that when using the corrected star formation rates and gas
densities, the correlation between star formation rate surface density and gas
surface density of bulges is similar to that of disks.Comment: Accepted for publication in Ap
About the origin of low wafer performance and crystal defect generation on seed-cast growth of industrial mono-like silicon ingots
The era of the seed-cast grown monocrystalline-based silicon ingots is coming. Mono-like, pseudomono or quasimono wafers are product labels that can be nowadays found in the market, as a critical innovation for the photovoltaic industry. They integrate some of the most favorable features of the conventional silicon substrates for solar cells, so far, such as the high solar cell efficiency offered by the monocrystalline Czochralski-Si (Cz-Si) wafers and the lower cost, high productivity and full square-shape that characterize the well-known multicrystalline casting growth method. Nevertheless, this innovative crystal growth approach still faces a number of mass scale problems that need to be resolved, in order to gain a deep, 100% reliable and worldwide market: (i) extended defects formation during the growth process; (ii) optimization of the seed recycling; and (iii) parts of the ingots giving low solar cells performance, which directly affect the production costs and yield of this approach. Therefore, this paper presents a series of casting crystal growth experiments and characterization studies from ingots, wafers and cells manufactured in an industrial approach, showing the main sources of crystal defect formation, impurity enrichment and potential consequences at solar cell level. The previously mentioned technological drawbacks are directly addressed, proposing industrial actions to pave the way of this new wafer technology to high efficiency solar cells
Auto-titrating continuous positive airway pressure for patients with acute transient ischemic attack: a randomized feasibility trial
BACKGROUND AND PURPOSE: Transient ischemic attack (TIA) patients are at risk of recurrent vascular events. The primary objectives were to evaluate among TIA patients the prevalence of sleep apnea and among patients with sleep apnea auto-titrating continuous positive airway pressure (auto-CPAP) adherence. The secondary objective was to describe among TIA patients with sleep apnea the recurrent vascular event rate by auto-CPAP use category.
METHODS: All intervention patients received auto-CPAP for 2 nights, but only intervention patients with evidence of sleep apnea received auto-CPAP for the remainder of the 90-day period. Intervention patients received polysomnography at 90 days after TIA. Control patients received polysomnography at baseline and at 90 days. Acceptable auto-CPAP adherence was defined as >or=4 hours per night for >or=75% of nights. Vascular events included recurrent TIA, stroke, hospitalization for congestive heart failure, myocardial infarction, or death.
RESULTS: We enrolled 70 acute TIA patients: 45 intervention and 25 control. The majority of patients had sleep apnea: 57% at baseline and 59% at 90 days. Among the 30 intervention patients with airflow obstruction, 12 (40%) had acceptable auto-CPAP adherence, 18 (60%) had some use, and none had no use. Three intervention patients (12%) had recurrent events compared with 1 (2%;P=0.13) control patient. The vascular event rate was highest among sleep apnea patients with no CPAP use: none, 16%;some, 5%;acceptable adherence 0% (P=0.08).
CONCLUSIONS: Sleep apnea is common among acute TIA patients. It appears feasible to provide auto-CPAP in the acute TIA period. Larger studies should evaluate whether a strategy of diagnosing and treating sleep apnea can reduce recurrent vascular events after TIA
Optical activity of the super-atom molecular orbital (SAMO) states in Li@ C60+ conformers
Super Atom Molecular Orbitals (SAMOs) are electronic excited states found in fullerenes in which an electron is excited to one or, more generally, several virtual orbitals with hydrogen like character. The photoexcitation mechanism of the SAMO states strongly depends on the symmetry of the fullerene. For instance the SAMOs of the spherical C60 fullerene are not optically active while breaking the symmetry by adding a dopant can make the SAMO states optically active. In this proceeding we investigate the optical activity of the SAMO states in several conformers of the Li@C60+ fullerene and we show that the position of the lithium atom inside the fullerene cage strongly affects the computed oscillator strengths and transition dipole moments of the SAMO states
Atomic Hydrogen Properties of AGN Host Galaxies: HI in 16 NUclei of GAlaxies (NUGA) Sources
We present a comprehensive spectroscopic imaging survey of the distribution
and kinematics of atomic hydrogen (HI) in 16 nearby spiral galaxies hosting low
luminosity AGN, observed with high spectral and spatial resolution (resolution:
~20 arcsec, 5 km/s) using the NRAO Very Large Array (VLA). The sample contains
a range of nuclear types, ranging from Seyfert to star-forming nuclei and was
originally selected for the NUclei of GAlaxies project (NUGA) - a spectrally
and spatially resolved interferometric survey of gas dynamics in nearby
galaxies designed to identify the fueling mechanisms of AGN and the relation to
host galaxy evolution. Here we investigate the relationship between the HI
properties of these galaxies, their environment, their stellar distribution and
their AGN type. The large-scale HI morphology of each galaxy is classified as
ringed, spiral, or centrally concentrated; comparison of the resulting
morphological classification with AGN type reveals that ring structures are
significantly more common in LINER than in Seyfert host galaxies, suggesting a
time evolution of the AGN activity together with the redistribution of the
neutral gas. Dynamically disturbed HI disks are also more prevalent in LINER
host galaxies than in Seyfert host galaxies. While several galaxies are
surrounded by companions (some with associated HI emission), there is no
correlation between the presence of companions and the AGN type
(Seyfert/LINER).Comment: 54 pages, 7 figures, accepted for publication in AJ. The
full-resolution version is available at
http://www.mpia.de/homes/haan/research.htm
Context Dependent Neuroprotective Properties of Prion Protein (Prp)
Although it has been known for more than twenty years that an aberrant conformation of the prion protein (PrP) is the causative agent in prion diseases, the role of PrP in normal biology is undetermined. Numerous studies have suggested a protective function for PrP, including protection from ischemic and excitotoxic lesions and several apoptotic insults. On the other hand, many observations have suggested the contrary, linking changes in PrP localization or domain structure—independent of infectious prion conformation—to severe neuronal damage. Surprisingly, a recent report suggests that PrP is a receptor for toxic oligomeric species of a-β, a pathogenic fragment of the amyloid precursor protein, and likely contributes to disease pathogenesis of Alzheimer’s disease. We sought to access the role of PrP in diverse neurological disorders. First, we confirmed that PrP confers protection against ischemic damage using an acute stroke model, a well characterized association. After ischemic insult, PrP knockouts had dramatically increased infarct volumes and decreased behavioral performance compared to controls. To examine the potential of PrP’s neuroprotective or neurotoxic properties in the context of other pathologies, we deleted PrP from several transgenic models of neurodegenerative disease. Deletion of PrP did not substantially alter the disease phenotypes of mouse models of Parkinson’s disease or tauopathy. Deletion of PrP in one of two Huntington’s disease models tested, R6/2, modestly slowed motor deterioration as measured on an accelerating rotarod but otherwise did not alter other major features of the disease. Finally, transgenic overexpression of PrP did not exacerbate the Huntington’s motor phenotype. These results suggest that PrP has a context-dependent neuroprotective function and does not broadly contribute to the disease models tested herein.Ellison Medical FoundationWhitaker Health Sciences Fund Fellowshi
Marine epibiosis. II. Reduced fouling on Polysyncraton lacazei (Didemnidae, Tunicata) and proposal of an antifouling potential index
Polysyncraton lacazei is a colonial tunicate (family didemnidae) living in the NW-mediterranean rocky sublitoral. A thorough scanning of numerous colonies revealed that in spite of an apparently heavy local fouling pressure only one fouling species — a kamptozoan — is encountered with some regularity on Polysyncraton. We try to define the epibiotic situation of sessile marine organisms as composed of four epibiotic parameters: longevity or exposure time (A), epibiont load (E), colonizer pool (CP) and fouling-period (FP). Subsequently, these factors are combined to propose an “Antifouling Potential” index: AFP=(1−E/CP)×A/(FP+A). This index is intended to permit evaluating the relative antifouling defense potency to be expected in a given organism in a given epibiotic situation and to compare different cases of epibiosis and fouling
A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.
We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis
Predicting Infectious ComplicatioNs in Children with Cancer : an external validation study
Background:The aim of this study was to validate the 'Predicting Infectious ComplicatioNs in Children with Cancer' (PICNICC) clinical decision rule (CDR) that predicts microbiologically documented infection (MDI) in children with cancer and fever and neutropenia (FN). We also investigated costs associated with current FN management strategies in Australia.Methods:Demographic, episode, outcome and cost data were retrospectively collected on 650 episodes of FN. We assessed the discrimination, calibration, sensitivity and specificity of the PICNICC CDR in our cohort compared with the derivation data set.Results:Using the original variable coefficients, the CDR performed poorly. After recalibration the PICNICC CDR had an area under the receiver operating characteristic (AUC-ROC) curve of 0.638 (95% CI 0.590-0.685) and calibration slope of 0.24. The sensitivity, specificity, positive predictive value and negative predictive value of the PICNICC CDR at presentation was 78.4%, 39.8%, 28.6% and 85.7%, respectively. For bacteraemia, the sensitivity improved to 85.2% and AUC-ROC to 0.71. Application at day 2, taking into consideration the proportion of MDI known (43%), further improved the sensitivity to 87.7%. Length of stay is the main contributor to cost of FN treatment, with an average cost per day of AUD 2183 in the low-risk group.Conclusions:For prediction of any MDI, the PICNICC rule did not perform as well at presentation in our cohort as compared with the derivation study. However, for bacteraemia, the predictive ability was similar to that of the derivation study, highlighting the importance of recalibration using local data. Performance also improved after an overnight period of observation. Implementation of a low-risk pathway, using the PICNICC CDR after a short period of inpatient observation, is likely to be safe and has the potential to reduce health-care expenditure
- …
