19,758 research outputs found

    Ising Field Theory on a Pseudosphere

    Full text link
    We show how the symmetries of the Ising field theory on a pseudosphere can be exploited to derive the form factors of the spin fields as well as the non-linear differential equations satisfied by the corresponding two-point correlation functions. The latter are studied in detail and, in particular, we present a solution to the so-called connection problem relating two of the singular points of the associated Painleve VI equation. A brief discussion of the thermodynamic properties is also presented.Comment: 39 pages, 6 eps figures, uses harvma

    Energetics of ion competition in the DEKA selectivity filter of neuronal sodium channels

    Get PDF
    The energetics of ionic selectivity in the neuronal sodium channels is studied. A simple model constructed for the selectivity filter of the channel is used. The selectivity filter of this channel type contains aspartate (D), glutamate (E), lysine (K), and alanine (A) residues (the DEKA locus). We use Grand Canonical Monte Carlo simulations to compute equilibrium binding selectivity in the selectivity filter and to obtain various terms of the excess chemical potential from a particle insertion procedure based on Widom's method. We show that K+^{+} ions in competition with Na+^{+} are efficiently excluded from the selectivity filter due to entropic hard sphere exclusion. The dielectric constant of protein has no effect on this selectivity. Ca2+^{2+} ions, on the other hand, are excluded from the filter due to a free energetic penalty which is enhanced by the low dielectric constant of protein.Comment: 14 pages, 7 figure

    Ion dynamics and acceleration in relativistic shocks

    Get PDF
    Ab-initio numerical study of collisionless shocks in electron-ion unmagnetized plasmas is performed with fully relativistic particle in cell simulations. The main properties of the shock are shown, focusing on the implications for particle acceleration. Results from previous works with a distinct numerical framework are recovered, including the shock structure and the overall acceleration features. Particle tracking is then used to analyze in detail the particle dynamics and the acceleration process. We observe an energy growth in time that can be reproduced by a Fermi-like mechanism with a reduced number of scatterings, in which the time between collisions increases as the particle gains energy, and the average acceleration efficiency is not ideal. The in depth analysis of the underlying physics is relevant to understand the generation of high energy cosmic rays, the impact on the astrophysical shock dynamics, and the consequent emission of radiation.Comment: 5 pages, 3 figure

    Automatic Estimation of the Seafloor Geomorphology of the Santos Basin, Brazil

    Get PDF
    The bathymetry and acoustic backscatter of Santos Basin, Brazil were mapped using a SeaBeam 2112 (12 kHz, 151 beam) Multibeam Echosounder (MBES) aboard the R/V Falcon Explorer. This MBES data was acquired from January-November, 2000, during a high-resolution multi-channel 3D seismic survey, resulting in 380 parallel lines of 90 km length, spaced 250 m apart. The final survey mapped an area of 5,000 km2{}^2 in water depths of 900--2000 m. These closely spaced multibeam tracks resulted in an average overlap between swaths of 1000%, thereby ensonifying most areas of the seafloor at least ten times. Traditional (hand) processing of a dataset this dense is time-consuming and tedious, and is prone to subjective decisions and operator fatigue. However, the density of the survey makes it ideal for automatic processing methods. Recently, we have developed an algorithm called CUBE that addresses the twin concerns of robustness and reliability that are often raised about automatic processing methods. Based on a very robust multiple hypothesis Bayesian estimator, CUBE processes MBES bathymetry directly into a set of gridded products representing the best estimate of probable depth, and a measure of the uncertainty associated with this estimate. We apply CUBE to the Santos Basin data, illustrating in terms of processing time and human effort the advantages of processing such data automatically. We compare the automatically generated data with a hand-processed set, showing that the results agree to within the estimated experimental uncertainty. We next illustrate the use of CUBE as a data quality measure, indicating areas of concern in the data. Finally, we utilize the bathymetric grid resulting from CUBE to investigate the seafloor morphology, which includes a set of linear depressions parallel and perpendicular to the Shelf break. These linear depressions are the surface expression of fault planes related to subsurface salt walls. In the shallowest part, the detailed bathymetry also shows various pockmarks (350 m wide) possibly associated with fluid expulsion, while in the deeper portion we observe a small number of larger ones (2500 m wide), which are clearly inactive as they are partially filled with recent sediments. Some pockmarks are aligned with fault planes, suggesting a preferential pathway for fluid expulsion. The acquisition geometry for this survey allowed us to analyze the behavior of the backscatter response as a function of grazing angle for any given piece of seafloor, thus eliminating the need to assume a homogeneous seafloor across the swath. Although the backscatter is not calibrated, the variation in response can be used to investigate the effects of gas in shallow sediments of the survey area

    Cosmology with intensity mapping techniques using atomic and molecular lines

    Get PDF
    We present a systematic study of the intensity mapping technique using updated models for the different emission lines from galaxies and identify which ones are more promising for cosmological studies of the post reionization epoch. We consider the emission of Lyα{\rm Ly\alpha}, Hα{\rm H\alpha}, Hβ\beta, optical and infrared oxygen lines, nitrogen lines, CII and the CO rotational lines. We then identify that Lyα{\rm Ly\alpha}, Hα{\rm H\alpha}, OII, CII and the lowest rotational CO lines are the best candidates to be used as IM probes. These lines form a complementary set of probes of the galaxies emission spectra. We then use reasonable experimental setups from current, planned or proposed experiments to access the detectability of the power spectrum of each emission line. Intensity mapping of Lyα{\rm Ly\alpha} emission from z=2z=2 to 3 will be possible in the near future with HETDEX, while far-infrared lines require new dedicated experiments. We also show that the proposed SPHEREx satellite can use OII and Hα{\rm H\alpha} IM to study the large-scale distribution of matter in intermediate redshifts of 1 to 4. We found that submilimeter experiments with bolometers can have similar performances at intermediate redshifts using CII and CO(3-2).Comment: 18 pages, 21 figures, 5 tables, published in MNRAS, typos correcte

    The ion motion in self-modulated plasma wakefield accelerators

    Get PDF
    The effects of plasma ion motion in self-modulated plasma based accelerators is examined. An analytical model describing ion motion in the narrow beam limit is developed, and confirmed through multi-dimensional particle-in-cell simulations. It is shown that the ion motion can lead to the early saturation of the self-modulation instability, and to the suppression of the accelerating gradients. This can reduce the total energy that can be transformed into kinetic energy of accelerated particles. For the parameters of future proton-driven plasma accelerator experiments, the ion dynamics can have a strong impact. Possible methods to mitigate the effects of the ion motion in future experiments are demonstrated.Comment: 11 pages, 3 figures, accepted for publication in Phys. Rev. Let
    corecore