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The energetics of ionic selectivity in the neuronal sodium channels is studied. A simple model constructed
for the selectivity filter of the channel is used. The selectivity filter of this channel type contains aspartate (D),
glutamate (E), lysine (K), and alanine (A) residues (the DEKA locus). We use Grand Canonical Monte Carlo
simulations to compute equilibrium binding selectivity in the selectivity filter and to obtain various terms of
the excess chemical potential from a particle insertion procedure based on Widom’s method. We show that
K+ ions in competition with Na+ are efficiently excluded from the selectivity filter due to entropic hard sphere
exclusion. The dielectric constant of the protein has no effect on this selectivity. Ca2+ ions, on the other hand,
are excluded from the filter due to a free energetic penalty which is enhanced by the low dielectric constant of
the protein.
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1. Introduction

Sodium (Na) hannels an be ategorized on the basis of their funtion, the ell in whih they are

found, struture of the protein (both seondary and tertiary), and the struture of the seletivity

�lter (SF). The SF is a narrow region of the permeation pathway, where the hannel disriminates

between di�erent ions. The seletivity properties of di�erent hannels primarily depend on what

kind of amino aid motifs are present in their SF.

The two most widely studied lasses of Na hannels are the neuronal (this is the one studied

here) and baterial Na hannels. The neuronal Na hannels' SF has a DEKA lous made of aspar-

tate (D), glutamate (E), lysine (K), and alanine (A) residues. On the basis of their homology with

L-type alium (Ca) hannels [1℄, these amino aids seem to fae the permeation pathway. The

aurate struture of the DEKA Na hannels is still unknown, so theoretial studies are restrited

to using models based on homologies on known strutures or on redued models based on mini-

mal strutural information available. This is the approah used in this work, while the minimal

strutural information is that the SF has the DEKA lous.

The baterial Na hannels, on the other hand, have X-ray strutures measured reently [2�

5℄. These hannels inlude NavMs [2, 5℄, NavAb [3, 4℄, and NaChBa [6℄. The struture of a

Ca

2+
-seletive mutant of NavAb is also available [7℄. These hannels have a lot of aspartates and

glutamates in their SF, therefore, at a �rst glane, they look like a Ca hannel. Hydration plays
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an important role in the seletivity mehanisms of these hannels [8℄, but this is not the subjet of

the present study.

Simulation studies for Na hannels were based on models of di�erent resolutions. All-atom,

expliit-water models are usually used when X-ray strutures are available. They are generally

studied with moleular dynamis (MD) simulations [4, 5, 9℄. In the ase of the DEKA hannel,

Lipkind and Fozzard [10℄ performed MD simulations to explore the Na

+
vs. K

+
seletivity for

various mutants of DEKA based on extreme homology modeling.

Boda et al. [11�13℄ and Vora et al. [14℄ used redued models of Na hannels in the impliit

solvent framework. In these models, only the SF amino aids were represented in an expliit way,

while other parts of the hannel protein were redued into a dieletri body. This is the modeling

level that we use in this work. An intermediate approah is that of Finnerty et al. [15℄, who proposed

a loalization method, where SF amino aid terminal groups are loalized into ertain positions

inspired by strutural information.

The advantage of redued models is that they allow the design of simulation setups in time and

length sales that mimi experimental setups and able to study a wide range of onentrations and

voltage. Also, they make it possible to fous on the essential features of the system (SF struture,

pore geometry, bath onentrations, voltage, et.) and to take the e�et of the remaining degrees

of freedom into aount in an averaged, but physially well-based manner (dieletri response as

well as external onstraints suh as the walls of the hannel and the membrane).

Simulations an also be distinguished on the basis of the fat whether they were performed in

or out of equilibrium. Equilibrium simulations an study the seletive binding of various ions in

the SF. Monte Carlo (MC) simulations, espeially in the grand anonial (GC) ensemble (Grand

Canonial Monte Carlo, GCMC) are the ideal tools for this purpose [11�13, 15℄. MD simulations an

also be used to study seletive binding [10, 16, 17℄. Information for transport properties, however,

an be extrapolated even from equilibrium simulations on the basis of the integrated Nernst-

Plank equation as suggested by Gillespie et al. [18, 19℄. Simulating transport requires a dynamial

simulation method. These an be MD simulations [4, 5, 9℄, Brownian Dynamis simulations [14, 20�

22℄, and Dynamial Monte Carlo (DMC) simulations [13, 23, 24℄. Transport an also be studied

with theoretial methods suh as the Energy Variational approah of Eisenberg et al. [25�28℄.

Extending equilibrium binding-seletivity simulations to non-equilibrium situations of steady-

state ioni transport is of ruial importane beause experimental data are available for ioni

urrents from eletrophysiologial measurements [29�44℄. The relation of the �uxes arried by the

ompeting ions (�ux ratio) de�nes dynamial seletivity. How binding seletivity is related to

dynamial seletivity is, however, a non-trivial issue as shown by Rutkai et al. [45℄. In partiular,

the �ux is determined not only by the oupany of a given ioni speies in the hannel, but also

by its mobility.

Measurements show permeability ratios 0.06 and 0.13 for K

+
/Na

+
and Ca

2+
/Na

+
, respetively

[29�38℄, while < 0.01 �ux ratio for K

+
/Na

+
[39�44℄. To a �rst approximation, we an assume that

binding seletivity agrees well with the above seletivity values measured in terms of �ux. To what

degree this assumption is valid an be studied by dynamial simulation methods. Our �rst attempt

in this diretion is the DMC study of Csányi et al. [13℄.

In this paper, we fous on equilibrium binding, so it is a diret ontinuation of our previous pa-

pers [11, 12℄, where the binding seletivity of the DEKA lous was studied with GCMC simulations

using a redued model of the SF. These studies used the harge-spae ompetition (CSC) meh-

anism of Nonner and Eisenberg [46�52℄ extended later to inhomogeneous models of the hannels

studied by GCMC simulations [11, 12, 18, 19, 53�58℄.

The main onlusions of those papers [11, 12℄ were that K

+
ions are exluded from the SF

by steri repulsion, while Ca

2+
ions are exluded by an eletrostati penalty. The new aspet of

this study is that we provide an energeti analysis for the phenomena desribed in our 2007 paper

[12℄. The energeti analysis is performed by separating the free energy (more exatly, the hemial

potential) into various terms orresponding to various interations suh as volume exlusion, ion-

ion, ion-dieletris, self energy, et. interations. This approah was introdued by Gillespie [59, 60℄

in his density funtional studies for the Ryanodine Reeptor Ca hannel and extended to three-

dimensional models inluding inhomogeneous dieletris using a GCMC methodology [61℄ on the
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basis of Widom's partile insertion method [62, 63℄.

In our previous work, we analyzed the energetis of the seletivity of the L-type Ca hannel [61℄.

In that paper, the dieletri onstant of the protein (ǫpr) was allowed to be di�erent from that of the

baths (ǫw). It was shown that the low dieletri protein surrounding the pore fousing eletri �eld,

and thus enhaning eletrostatis is neessary to reprodue the miromolar seletivity observed for

the L-type Ca hannels [64, 65℄. We also extended that work for the ase of a dieletri onstant

di�erent inside the hannel (ǫch) from that of the bath [66℄. This model is a simple representation

of solvation. Our results showed that solvation plays a minor role in the seletivity mehanism of

the L-type Ca hannel. The explanation is that the solvation penalty for Ca

2+
is balaned by the

stronger interations of Ca

2+
with the SF harges. Our simulations extending this work to the

DEKA lous are in progress and will be published in a subsequent paper.

In this work, however, we restrit ourselves to the ase, where the dieletri onstants inside

and outside the hannel are the same (ǫch = ǫw). This is the model that was onsidered in our

2007 work [12℄. The SF of the Ca hannel is highly harged (EEEE lous, four glutamate residues

providing −4e harge). The DEKA �lter, on the other hand, is weakly harged (−1e altogether).
Therefore, it does not favor divalent ions (Ca

2+
). Additionally, the bulky terminal group of the

lysine is present, whih, aording to our hypothesis, is there to exlude large ions suh as K

+
.

This paper examines how these mehanisms work and their energeti basis.

2. Model

In our model, most of the atomi struture of the Na hannel is redued to a oarse-grained

geometry (Fig. 1). The hannel protein is represented as a ontinuum solid with dieletri oe�ient

ǫpr. The three dimensional body of the protein is obtained by rotating the thik line in Fig. 1 about

the r = 0 axis. The protein thus forms an aqueous pore that onnets the two baths. Water in

the baths and pore is desribed as an impliit solvent that is a ontinuum dieletri with uniform

dieletri oe�ient ǫw = 80. The entral ylindrial part of the pore (with radius R = 3.5− 4.5 Å

and length 10 Å) forms the seletivity �lter that inludes the only atoms of the protein that are

treated expliitly. These atoms are four half-harged `oxygen ions' O

1/2−
(Fig. 1B, red spheres)

representing the harged terminal groups of the D and E residues, while a positive `ammonium

ion' NH

+
4 (Fig. 1B, blue sphere) represents the terminal group of the K residue. The alanine is

ignored. The strutural oxygen ions are on�ned to the seletivity �lter (their enters are in the

region r ≤ R − Ri, |z| ≤ 5Å − Ri, where Ri is the ioni radius), but they an move freely inside

the �lter.

The ions are modeled as harged hard spheres with rystal radii (see aption of Fig. 1). The

omputation of the intermoleular energy terms due to sreened Coulomb potentials and intera-

tions with polarization harges indued on the dieletri boundaries (the boundary of the protein

and the eletrolyte; thik line in Fig. 1A) are desribed in our previous works [55, 61, 67℄. Ions are

restrited to the aqueous spae of the model and annot overlap with hard walls in the system.

Fig. 1A shows only the small entral region of the simulation ell. The entire simulation ell is a

ylinder with typial dimensions of radius 40 Å and length 180 Å. The hannel is embedded in a

membrane region that exludes ions by hard walls as desribed before [55℄.

3. Method of energetic analysis

In an equilibrium GCMC simulation, the aeptane of ion insertion/deletions of ions is gov-

erned by the on�gurational hemial potential of the respetive ioni speies i de�ned as

µi = kT ln ci(r) + µEX
i (r) = kT ln ci(B) + µEX

i (B), (3.1)

where k is Boltzmann's onstant, T is the temperature, ci(r) is the onentration pro�le, µEX
i (r) is

the exess hemial potential pro�le, ci(B) is the bulk onentration, and µ
EX
i (B) is the bulk exess

hemial potential. Although kT ci(r) and µEX
i (r) an be di�erent in di�erent regions (they are

position dependent), their sum is onstant due to equilibrium. The bulk exess hemial potentials
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Figure 1. Model of ion hannel, membrane, and eletrolyte. The three-dimensional geometry

(B) is obtained by rotating the two-dimensional shape shown in panel A around the z-axis. The

simulation ell is muh larger than shown in the �gure. The blue lines represent the grid over

whih the exess hemial potential pro�les are omputed. The grid is �ner inside the hannel

(width 0.5 Å), while it is oarser outside the hannel (width 2 Å). The seletivity �lter (|z| < 5
Å) ontains 4 half harged oxygen ions O

1/2−
(red spheres in panel B) and an ammonium ion

NH

+
4 (blue sphere in panel B). For the radii of the ions, the Pauling radii are used: 0.6, 0.95,

1.33, 1.52, 1.7, 0.99, 1.81, 1.4, and 1.5 Å for Li

+
, Na

+
, K

+
, Rb

+
, Cs

+
, Ca

2+
, Cl

−
, O

1/2−
, and

NH

+
4 respetively.

µEX
i (B) orresponding to presribed bulk onentrations ci(B) are alulated with the Adaptive

GCMC method [68℄. By rewriting Eq. 3.1, the exess hemial potential di�erene is de�ned as

∆µEX
i (r) = µEX

i (r)− µEX
i (B) = −kT ln

(

ci(r)

ci(B)

)

. (3.2)

It an be identi�ed with the binding free energy of an ion moved from a bath (B) to position r of

the hannel [61℄. If we write up Eq. 3.2 for Na

+
and K

+
and take the di�erene, we an derive that

ln

(

cNa+(r)

cK+(r)

)

= ln

(

cNa+(B)

cK+(B)

)

+
∆∆µEX(r)

kT
, (3.3)

where

∆∆µEX(r) = ∆µEX
Na+(r)−∆µEX

K+(r). (3.4)

Similar equations an be given for other pairs of ions.

In Eq. 3.3, the left-hand side is alled `binding seletivity' beause it expresses the degree to

whih Na

+
is favored over K

+
at loation r (binding seletivity is positive if loation r is seletive for

Na

+
over K

+
). The orresponding term on the right-hand side ontaining the bulk onentrations

is alled `number advantage' [59℄ beause it expresses the advantage that an ioni speies has from

outnumbering the other speies in the bulk. The hannel an beome seletive for a given ioni

speies for two reasons: either from the number advantage or the energeti advantage expressed by

∆∆µEX(r).
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The energeti advantage, however, ontains terms due to di�erent interations present in the

system as desribed in Appendix A. The EX term an be divided in various ways. Here, we use

the division used in our latest work [66℄:

∆µEX
i (r) = ∆µHS

i (r) + ∆µII
i (r) + ∆µID

i (r) + ∆µSELF
i (r) (3.5)

or brie�y EX = HS+II+ ID+SELF, where HS means hard sphere exlusion, II means interation

with the ions, ID means interations with the dieletris (polarization harges indued by other

ions), and SELF means interations with the polarization harges indued by the ion itself. (In the

division of our earlier work [61℄, we used the DIEL term that ontained the SELF term, namely,

DIEL = ID+SELF.) We an also use the division EX = HS+MF+SC+SELF, where MF means

the interation with the mean (average) eletri �eld of all the existing harges in the system (ioni

and indued). SC expresses orrelations beyond the mean �eld level (SC refers to `sreening')

[59℄. The SELF term is a one-partile term (mean-�eld in nature) and orresponds to the average

eletrostati interation energy of the inserted ion with its self-indued harge. It is not inluded

in the ID or the MF term. The SELF term orresponds to the dieletri boundary fore or energy

of Ref. [69℄.

The omputation of all these terms an be found in our original paper [61℄ and in Appendix

A. Brie�y, the total EX hemial potential an unambiguously be obtained by inserting harged

hard spheres (representing the ions) in the Widom partile insertion method. Di�erent terms of

EX are omputed by inserting partiles interating only through short-ranged (HS) or more diret

(II) interations and obtaining the rest as residuals. For example, it is reasonable to ompute the

HS term by inserting unharged hard spheres with the same radius as the respetive ion in the

Widom proedure. All the remaining terms (II, ID, SELF) are eletrostati in nature and obtained

by deduting the HS term from the EX term. (The separation of HS and eletrostati terms and

their e�et on seletivity an already be found in the work of Nonner et al. [46℄ in the ontext of

the mean spherial approximation.) Similar proedures are applied to separate the II and ID, as

well as the MF and SC terms, as desribed in Appendix A.

The r-dependene of the various terms is omputed by ion insertions into grid ells shown in

Fig. 1. Note that the onentration pro�le an be omputed in two di�erent ways. First, sampling

the number of ions in a volume element, omputing the average ion number and dividing by the

volume of the element. This is advantageous when the onentration and/or the volume element

is large so there is a large enough sample of ions. The onentration, on the other hand, an be

omputed from Eq. 3.1 by omputing the EX term from the Widom method and deduting it from

the hemial potential. This approah is useful where the onentration is low. This method was

used in our simulations for the DEKA hannel.

Our grid is two-dimensional beause we have rotational symmetry. Our pro�les, therefore, are

expressed in terms of the (z, r) ylindrial oordinates. In this work, however, we show results that

are averaged over the r-oordinate

∆µEX
i (z) =

2

R2
min(z)

Rmin(z)
∫

0

r∆µEX
i (z, r) dr, (3.6)

where Rmin(z) = R(z) − Rlarger ion(z) is the ross setion that is aessible to the enter of the

larger of the ompeting ions (R(z) denotes the radius of the simulation domain at z).

4. Results and Discussion

We start our disussion with ompetition of ions of the same harge. Spei�ally, we study

seletivity of Na

+
over various monovalent ions. In the lassial mole fration experiment, the mole

fration of one ion (Na

+
, for example) is hanged while keeping the total ation onentration

onstant (when divalent ion is present, the total ioni strength is kept onstant in some studies).

These results are seen in Fig. 5 of Ref. [12℄. In this work, the onentration of the two ompeting

ations in the baths is the same (50 mM), so the number advantage is zero.
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Figure 2. The ∆µi(z)-pro�les for Na
+
and K

+
for the ase when the bath onentration is the

same for the two ompeting monovalent ations (50 mM) for ǫpr = 10 and R = 3.5 Å.

Figure 2 shows the various terms of the ∆µEX
i (z)-pro�les for Na+ and K

+
for protein dieletri

onstant ǫpr = 10 and �lter radius R = 3.5 Å. The value ǫpr = 10 is the value �xed in our studies

for the L-type Ca hannel [18, 19, 55, 56, 58, 61, 70, 71℄. The value R = 3.5 Å value was used in

our DMC study for the DEKA Na hannel to reprodue experimental data [13℄.

The EX terms are related to the onentration ratios through − ln[ci(r)/ci(B)] (see Eq. 3.2).

Therefore, where the EX term (or any omponent) is negative, it energetially favors the ioni

speies, so it inreases the onentration of that ioni speies. As also seen in Fig. 6 of our previous

paper [12℄, there are peaks at the entranes of the SF and the vestibules (|z| ∼ 5 Å). In the enter

of the SF, on the other hand, the onventrations are low. This region forms a depletion zone for

both ions, where ions have di�ulty to enter. The question, therefore, is whih ion is exluded less

from this region. The answer is that there are more Na

+
than K

+
in the SF (the EX term is lower

for Na

+
), so the SF is Na

+
-seletive.

All the eletrostati terms (II, ID, MF, SC) are negative exept the SELF term. The SELF

term is repulsive beause the ions are in the ǫw = 80 region, so the sign of the indued harge on

the ǫpr|ǫw boundary is the same as the sign of the inserted ion itself. This pratially orresponds

to the dieletri penalty an ion must pay when it passes the low dieletri membrane region as

desribed in lassial works [72�75℄. The SELF term is slightly larger for Na

+
beause the smaller

Na

+
an get loser to the hannel wall and an indue larger polarization harge.

The other term that is positive is the HS term desribing volume exlusion. This is the term

that is very di�erent in the ase of Na

+
and K

+
; it is larger in the ase of K

+
. Beause the size

of K

+
ions (we talk about the dehydrated (Pauling) radius) is larger, it is more di�ult to insert

suh an ion in the SF. Therefore, K

+
has a larger entropi penalty than Na

+
does. This di�erene

is espeially apparent in the enter of the SF, where the NH

+
4 (the strutural ion representing the

large terminal group of the lysine) pro�le has a peak (see Fig. 6 of Ref. [12℄). Without the HS term

(ions of �nite size) we ould not get a Na

+
-seletive �lter (against K

+
) in this model.

The MF term is negative, beause the SF is negatively harged. There is no spae for the ations

to fully neutralize the SF harge. The SC term is similar to the MF term in order of magnitude

indiating that mean �eld theories are not su�ient to study ioni systems in rowded on�ned
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Figure 3. The binding a�nity and HS advantage urves for Na

+
vs. K

+
ompetition for ǫpr = 10

(top panels) and 80 (bottom panels) for �lter radii R = 3.5, 4, and 4.5 Å (50-50 mM bath

onentrations).

spaes suh as the SF of ion hannels.

The dominant term that drives Na

+
vs. K

+
seletivity is the HS term. In Figs. 3 and 4, therefore,

only the di�erenes of the EX and HS terms are shown for various ases. In this speial ase, where

the number advantage is zero, the EX di�erene is equal to the binding a�nity (see Eq. 3.3), while

the HS term is the dominant term of ∆∆µEX(r). Sine the di�erenes are obtained by deduting

the K

+
terms from the Na

+
terms, positive values favor Na

+
.

Figure 3 shows the pro�les for various pore radii for ǫpr = 10 (top panels) and ǫpr = 80 (bottom
panels). Narrower hannels favor Na

+
even more, as expeted, beause it is even more di�ult

to �nd spae for the large K

+
ions in the small SF ompared to Na

+
. Putting it in another way,

Na

+
vs. K

+
seletivity is better for narrow hannels, where stronger ompetition is fored by the

on�nement and lak of spae, so the smaller size of Na

+
has the advantage. The binding a�nity

urves (left panels) and the HS advantages (right panels) behave similarly with small di�erenes

due to other energeti terms (see Fig. 2).

Another onlusion of the �gure is that Na

+
vs. K

+
seletivity does not depend on the dieletri

onstant of the protein; the urves for ǫpr = 10 (top panels) and ǫpr = 80 (bottom panels) behave

pratially the same.

Figure 4 shows the same urves but now for a �xed pore radius (R = 3.5 Å) and di�erent

monovalent ations (Li

+
, K

+
, Rb

+
, Cs

+
) ompeting with Na

+
. The main onlusion is similar to

those drawn at Fig. 3; the rowded SF favors the smaller ion. The pore is seletive for Li

+
against

Na

+
, while it is seletive for Na

+
against the larger ions.

The protein dieletri onstant does not have an e�et on these pro�les. Of ourse, the value of

ǫpr has a large e�et on the individual ioni pro�les and the oupanies (see Fig. 8 of Ref. [12℄),

but not on the relative ones that we study here.

In the seond half of this setion, we analyze the ompetition of Na

+
against Ca

2+
. The other

usual way to study the behavior of the hannel with varying eletrolyte omposition is to keep

the onentration of one speies �xed (Na

+
, for example) and to add another speies (Ca

2+
,
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Figure 4. The binding a�nity and HS advantage urves for the ompetition of Na

+
against

various monovalent ions (Li

+
, K

+
, Rb

+
, Cs

+
) for ǫpr = 10 (top panels) and 80 (bottom panels)

(50-50 mM bath onentrations, R = 3.5 Å).

for example) gradually. This added salt experiment was done by Almers and MCleskey in their

experiment for the L-type Ca hannel [64, 65℄. We performed this kind of experiment in our previous

simulations for the DEKA lous and its DEEA mutant, see Fig. 2 of Ref. [12℄.

Those simulations reprodued the experiment of Heinemann et al. [38℄ qualitatively. Heinemann

et al. found that mutating the DEKA lous into a DEEA lous the seletivity behavior of the

hannel is reminisent to Ca hannels rather than Na hannels. In experiment, the urrent drops to

half (IC50) at Ca

2+
onentration 10−4

M, while in our simulations, the number of Na

+
ions drops

to half at the same onentration. The explanation is that the DEEA mutation has −3e harge

produing a Ca hannel, but with weaker seletivity than in the ase of the −4e harge (EEEE

lous). The DEKA lous, on the other hand, shows Na

+
over Ca

2+
seletivity. This seletivity is

stronger for smaller ǫpr (see Fig. 10A of Ref. [12℄). The dieletri onstant of the protein, therefore,

has a strong e�et in the ase of monovalent vs. divalent ompetition.

In Fig. 5, we show results only for two hosen Ca

2+
onentrations, 10 mM (top panels) and

40 mM (bottom panels) � both are well above the physiologial values (∼ 1− 2 mM).

The bakground Na

+
onentration is 50 mM. The Na

+
and Ca

2+
onentration pro�les are

shown for ǫpr = 80 (left panels) and 10 (right panels).

There are more Na

+
than Ca

2+
ions in the �lter in the ase of ǫpr = 10 for both onentra-

tions. A single Na

+
ion e�iently ounterbalanes the �lter harge. Ca

2+
ions, on the other hand,

overharge the �lter, whih is eletrostatially unfavorable. To ounterbalane this overharge, a

Cl

−
would be needed, but there is no spae left for it in the �lter.

In the ase ǫpr = 80, on the other hand, there are more Ca

2+
ions at [Ca

2+] = 40 mM. The

explanation is that Ca

2+
is still double harged so the SF attrats it more strongly. The overharged

�lter is balaned by Cl

−
ions from outside the �lter. In this ase, it is possible beause the Coulomb

fores are more long-ranged and more sreened than in the ase of ǫpr = 10, where the low-dieletri
protein fouses the eletri �eld. This means that the low dieletri protein is needed to exlude

Ca

2+
.
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Figure 5. Ca2+ and Na

+
onentration pro�les for two di�erent Ca

2+
onentrations (10 and 40

mM in top and bottom panels, respetively) with a 50 mM Na

+
bakground (R = 3.5 Å). The

pro�les are shown for protein dieletri onstants ǫpr = 80 (left panels) and 10 (right panels).

The energetis of this phenomenon is analyzed in Figs. 6 and 7. The di�erene in Na

+
vs. Ca

2+

seletivity is more learly seen by plotting the binding seletivity urves. When this is positive, the

pore is Na

+
-seletive, while it is Ca

2+
-seletive in the opposite ase. The number advantages are

also indiated with dashed horizontal lines. As bath Ca

2+
onentration is inreased, this line and

the binding seletivity urve with it are shifted downwards. The shape of the binding seletivity

urves does not hange muh with the bath Ca

2+
onentration. We an onlude, therefore, that

Na

+
vs. Ca

2+
seletivity does not depend on the bath Ca

2+
onentration. This is beause the

DEKA lous is a singly oupied SF; only one ation oupies the SF at one time (or none).

This was not true for the L-type Ca hannel. That hannel ould be multiply oupied, so

seletivity behavior was a funtion of Ca

2+
onentration due to orrelations of ations in the

�lter. Furthermore, the SF of the EEEE lous beame more harge neutral as Ca

2+
onentration

was inreased. Beause of that, the MF terms dereased (see Fig. 7 of Boda et al. [61℄). That e�et

is absent here; the probability that a hannel beomes harge neutral does not depend on ioni

onentrations, but it rather depends on entropi e�ets (available spae in the hannel given by

�lter radius and ion sizes).

The di�erene of binding seletivity and number advantage de�nes the free energy advantage,

∆∆µEX(r), (see Eq. 3.3). The terms of that advantage are analyzed for ǫpr = 10 and 80 for a given

Ca

2+
onentration (10 mM) in Fig. 7.

The top panels show the ǫpr = 10 data. The left panel shows the II and ID terms (EX = HS +
II+ID+SELF), while the right panel shows the MF and SC terms (EX = HS+MF+SC+SELF).
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Figure 6. Binding seletivity and number advantage urves for the ases onsidered in Fig. 5 for

three di�erent onentrations.

The EX and SELF terms are shown both in the left and right hand sides. The HS term (not shown)

is lose to zero beause the ions have similar size. The EX term is also lose to zero in this ase,

but this is the e�et of the balane of the di�erent free energy advantage terms. The SELF term

is very positive, so it favors Na

+
. This term is about four times larger for Ca

2+
than for Na

+
so it

plays the role of solvation penalty in this model. Without the SELF term we ould not get a Na

+

seletive �lter (against Ca

2+
) in this model. Both the II and ID terms (as well as the MF and SC

terms, see right panel) favor Ca

2+
beause Ca

2+
is attrated twie as strongly by the SF harges

(ioni and indued) as Na

+
.

The bottom panels show the ǫpr = 80 data. Here, the ID and SELF terms are absent, beause

there is no dieletri boundary present. The ID term favors Ca

2+
, while the SELF term favors

Na

+
. Beause the SELF term is larger in absolute value, these two terms together (ID + SELF)

still favor Na

+
, so the hannel beomes less Na

+
seletive in their absene.

The SC term is small for ǫpr = 80, whih means that Na

+
vs. Ca

2+
seletivity is hie�y a

mean-�eld e�et in this ase; the O

1/2−
ions attrat Ca

2+
twie as strongly as they attrat Na

+
.

In the ase of ǫpr = 10, on the other hand, SC is quite large indiating a SF of higher density and

orrelations beyond the mean-�eld level (mainly, with indued harges).

Summarized, the EX term is negative for ǫpr = 80, so it is rather a Ca hannel. The EX term

is lose to zero for ǫpr = 10, whih means that neither ions are favored energetially. Binding

seletivity is driven by the number advantage, whih results in a Na

+
seletive hannel (against

Ca

2+
) at physiologial Ca

2+
onentrations (1-2 mM).

5. Conclusions

We analyzed the energetis of ion seletivity in the SF of the DEKA Na hannels. The redued

model studied before [12℄ was able to reprodue the basi harateristis of this hannel. We showed

that K

+
ions are exluded from the SF due to entropi hard sphere exlusion. The dieletri

onstant of the protein has no e�et on this seletivity. In general, this �lter favors smaller ions

over larger ones.

Ca

2+
ions, on the other hand, are exluded from the �lter due to a free-energeti penalty whih
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Figure 7. The various terms of the free energy advantage for [Ca

2+
℄=10mM and [Na

+
℄=50mM.

Top and bottom panels show the results for ǫpr = 10 and 80, respetively. Left panels show the

EX urve in the EX = HS + II + ID + SELF division, while the reft panels show the EX urve

in the EX = HS+MF + SC + SELF division.

is enhaned by the low dieletri onstant of the protein. The DEKA lous works as a Na hannel in

the Na

+
vs. Ca

2+
ompetition by not favoring Ca

2+
. The dominant term is the number advantage

in the bulk solutions. In physiologial situations this mehanism su�es.

We showed that the dominant term of the energeti penalty is the SELF term, whih is a

dieletri penalty � the interation of the ion with the polarization harges indued by itself. This

dieletri penalty is a simple, impliit representation of solvation penalty in the framework of this

model, where ǫch = ǫw. Simulations, where a di�erent dieletri onstant inside the hannel is used,
take solvation into aount expliitly.
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A. Widom particle insertion method to compute the components of the ex-
cess chemical potential

The exess hemial potential pro�le an be omputed with Widom's partile insertion method

[62, 63℄. We divide the simulation ell into small volume elements as desribed in Ref. [61℄ and

insert �ghost� partiles into uniformly generated positions in these volume elements. We ompute

the interation energy U(r) of the �ghost� ion inserted at position r with the whole system and use
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it in the operation

W [U(r)] = −kT ln
〈

e−U(r)/kT
〉

, (1.1)

where the brakets denote GC ensemble average. If the interation energy U(r) ontains all the
terms (however we divide it), operator W provides the full exess hemial potential

µEX
i (r) = W

[

UHS
i (r) + U II

i (r) + U ID
i (r) + USELF

i (r)
]

. (1.2)

A diverging term UWALL
i (r) orresponding to overlap with protein and membrane walls is omitted

in this equation, beause we evaluate the exess hemial potential only at allowed positions.

The II term of the energy is obtained as U II
i (r) =

∑

j 6=i zizje
2ψII

ij(r, rj), where

ψII
ij(ri, rj) =

1

8πǫ0ǫw|ri − rj |
(1.3)

desribes the Coulomb interation between two unit harges at positions ri and rj . The ID term

is obtained as U ID
i (r) =

∑

j 6=i zizjeψ
ID
ij (r, rj), where

ψID
ij (ri, rj) =

1

8πǫ0





∫

B

hj(rj , s)

|ri − s|
ds+

∫

B

hi(ri, s)

|rj − s|
ds





(1.4)

desribes the interation of a unit harge at ri with the polarization harge, hj(rj , s), indued by

another unit harge at rj (or vie versa). Vetor s is running over the dieletri boundary B. The
polarization harge is determined by our Indued Charge Computation method [55, 67℄.

We de�ne terms in the exess hemial potential that orrespond to the di�erent interations as

suggested by Gillespie [59℄. The de�nition of these terms is not unique. In our previous work [61℄,

we suggested a possible and physially well-based proedure. The HS term in the exess hemial

potential is omputed by inserting unharged hard spheres into the system with the same size as

the orresponding ion, but without the harge:

µHS
i (r) = W

[

UHS
i (r)

]

. (1.5)

The II+ID+SELF part is the di�erene EX−HS. If we insert harged hard spheres into the system,

but ignore their interations with the polarization harges, we an ompute an exess hemial po-

tential term desribing the ion-ion interations inluding the HS interations:W
[

UHS
i (r) + U II

i (r)
]

.

The II term (that orresponds solely to the interation with the ioni harges) then is obtained by

subtrating the HS term:

µII
i (r) = W

[

UHS
i (r) + U II

i (r)
]

−W
[

UHS
i (r)

]

. (1.6)

The ID term (that orresponds to the interations with polarization harges indued by other ions)

is what remains:

µID
i (r) = µEX

i (r) − µHS
i (r)− µII

i (r)− µSELF
i (r). (1.7)

The SELF term is a one-partile term that orresponds to the i = j term of the ID energy

in Eq. 1.4. The MF terms is simply the interation with the mean eletri �eld omputed by

sampling with a unit point harge as desribed in Ref. [61℄. The SC term, again, is what remains:

SC = EX−HS−MF− SELF.
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