8,084 research outputs found

    Performance of the Colorado wind-profiling network, part 1.5A

    Get PDF
    The Wave Propagation Laboratory (WPL) has operated a network of radar wind Profilers in Colorado for about 1 year. The network consists of four VHF (50-MHz) radars and a UHF (915-MHz) radar. The Platteville VHF radar was developed by the Aeronomy Laboratory (AL) and has been operated jointly by WPL and AL for several years. The other radars were installed between February and May 1983. Experiences with these radars and some general aspects of tropospheric wind measurements with Doppler radar are discussed

    Gravitational waves from galaxy encounters

    Get PDF
    We discuss the emission of gravitational radiation produced in encounters of dark matter galactic halos. To this aim we perform a number of numerical simulations of typical galaxy mergers, computing the associated gravitational radiation waveforms as well as the energy released in the processes. Our simulations yield dimensionless gravitational wave amplitudes of the order of 101310^{-13} and gravitational wave frequencies of the order of 101610^{-16} Hz, when the galaxies are located at a distance of 10 Mpc. These values are of the same order as those arising in the gravitational radiation originated by strong variations of the gravitational field in the early Universe, and therefore, such gravitational waves cannot be directly observed by ground-based detectors. We discuss the feasibility of an indirect detection by means of the B-mode polarization of the Cosmic Microwave Background (CMB) induced by such waves. Our results show that the gravitational waves from encounters of dark matter galactic halos leave much too small an imprint on the CMB polarization to be actually observed with ongoing and future missions.Comment: 9 pages with revtex style, 3 ps figures; to be published in Physical Review

    "Kludge" gravitational waveforms for a test-body orbiting a Kerr black hole

    Get PDF
    One of the most exciting potential sources of gravitational waves for low-frequency, space-based gravitational wave (GW) detectors such as the proposed Laser Interferometer Space Antenna (LISA) is the inspiral of compact objects into massive black holes in the centers of galaxies. The detection of waves from such "extreme mass ratio inspiral" systems (EMRIs) and extraction of information from those waves require template waveforms. The systems' extreme mass ratio means that their waveforms can be determined accurately using black hole perturbation theory. Such calculations are computationally very expensive. There is a pressing need for families of approximate waveforms that may be generated cheaply and quickly but which still capture the main features of true waveforms. In this paper, we introduce a family of such "kludge" waveforms and describe ways to generate them. We assess performance of the introduced approximations by comparing "kludge" waveforms to accurate waveforms obtained by solving the Teukolsky equation in the adiabatic limit (neglecting GW backreaction). We find that the kludge waveforms do extremely well at approximating the true gravitational waveform, having overlaps with the Teukolsky waveforms of 95% or higher over most of the parameter space for which comparisons can currently be made. Indeed, we find these kludges to be of such high quality (despite their ease of calculation) that it is possible they may play some role in the final search of LISA data for EMRIs.Comment: 29 pages, 11 figures, requires subeqnarray; v2 contains minor changes for consistency with published versio

    Crew Exploration Vehicle Service Module Ascent Abort Coverage

    Get PDF
    The Crew Exploration Vehicle (CEV) is required to maintain continuous abort capability from lift off through destination arrival. This requirement is driven by the desire to provide the capability to safely return the crew to Earth after failure scenarios during the various phases of the mission. This paper addresses abort trajectory design considerations, concept of operations and guidance algorithm prototypes for the portion of the ascent trajectory following nominal jettison of the Launch Abort System (LAS) until safe orbit insertion. Factors such as abort system performance, crew load limits, natural environments, crew recovery, and vehicle element disposal were investigated to determine how to achieve continuous vehicle abort capability

    Gravitational-wave memory revisited: memory from the merger and recoil of binary black holes

    Get PDF
    Gravitational-wave memory refers to the permanent displacement of the test masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries produce a particularly interesting form of memory--the Christodoulou memory. Although it originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations have computed this non-oscillatory amplitude correction during the inspiral phase of binary coalescence. Using an "effective-one-body" description calibrated with the results of numerical relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown phases, as well as the memory's final saturation value, are calculated. Using this model for the memory, the prospects for its detection are examined, particularly for supermassive black hole binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of a "linear" memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects for observing these effects are also discussed.Comment: 6 pages, 2 figures; accepted to the proceedings of the 7th International LISA Symposium; v2: updated figures and signal-to-noise ratios, several minor changes to the tex

    A Systematic Search for High Surface Brightness Giant Arcs in a Sloan Digital Sky Survey Cluster Sample

    Get PDF
    We present the results of a search for gravitationally-lensed giant arcs conducted on a sample of 825 SDSS galaxy clusters. Both a visual inspection of the images and an automated search were performed and no arcs were found. This result is used to set an upper limit on the arc probability per cluster. We present selection functions for our survey, in the form of arc detection efficiency curves plotted as functions of arc parameters, both for the visual inspection and the automated search. The selection function is such that we are sensitive only to long, high surface brightness arcs with g-band surface brightness mu_g 10. Our upper limits on the arc probability are compatible with previous arc searches. Lastly, we report on a serendipitous discovery of a giant arc in the SDSS data, known inside the SDSS Collaboration as Hall's arc.Comment: 34 pages,8 Fig. Accepted ApJ:Jan-200

    Thermal and Dynamical Equilibrium in Two-Component Star Clusters

    Get PDF
    We present the results of Monte Carlo simulations for the dynamical evolution of star clusters containing two stellar populations with individual masses m1 and m2 > m1, and total masses M1 and M2 < M1. We use both King and Plummer model initial conditions and we perform simulations for a wide range of individual and total mass ratios, m2/m1 and M2/M1. We ignore the effects of binaries, stellar evolution, and the galactic tidal field. The simulations use N = 10^5 stars and follow the evolution of the clusters until core collapse. We find that the departure from energy equipartition in the core follows approximately the theoretical predictions of Spitzer (1969) and Lightman & Fall (1978), and we suggest a more exact condition that is based on our results. We find good agreement with previous results obtained by other methods regarding several important features of the evolution, including the pre-collapse distribution of heavier stars, the time scale on which equipartition is approached, and the extent to which core collapse is accelerated by a small subpopulation of heavier stars. We briefly discuss the possible implications of our results for the dynamical evolution of primordial black holes and neutron stars in globular clusters.Comment: 31 pages, including 13 figures, to appear in Ap

    Cosmic cookery : making a stereoscopic 3D animated movie.

    Get PDF
    This paper describes our experience making a short stereoscopic movie visualizing the development of structure in the universe during the 13.7 billion years from the Big Bang to the present day. Aimed at a general audience for the Royal Society's 2005 Summer Science Exhibition, the movie illustrates how the latest cosmological theories based on dark matter and dark energy are capable of producing structures as complex as spiral galaxies and allows the viewer to directly compare observations from the real universe with theoretical results. 3D is an inherent feature of the cosmology data sets and stereoscopic visualization provides a natural way to present the images to the viewer, in addition to allowing researchers to visualize these vast, complex data sets. The presentation of the movie used passive, linearly polarized projection onto a 2m wide screen but it was also required to playback on a Sharp RD3D display and in anaglyph projection at venues without dedicated stereoscopic display equipment. Additionally lenticular prints were made from key images in the movie. We discuss the following technical challenges during the stereoscopic production process; 1) Controlling the depth presentation, 2) Editing the stereoscopic sequences, 3) Generating compressed movies in display speci¯c formats. We conclude that the generation of high quality stereoscopic movie content using desktop tools and equipment is feasible. This does require careful quality control and manual intervention but we believe these overheads are worthwhile when presenting inherently 3D data as the result is signi¯cantly increased impact and better understanding of complex 3D scenes

    A Compact Supermassive Binary Black Hole System

    Full text link
    We report on the discovery of a supermassive binary black hole system in the radio galaxy 0402+379, with a projected separation between the two black holes of just 7.3 pc. This is the closest black hole pair yet found by more than two orders of magnitude. These results are based upon recent multi-frequency observations using the Very Long Baseline Array (VLBA) which reveal two compact, variable, flat-spectrum, active nuclei within the elliptical host galaxy of 0402+379. Multi-epoch observations from the VLBA also provide constraints on the total mass and dynamics of the system. Low spectral resolution spectroscopy using the Hobby-Eberly Telescope indicates two velocity systems with a combined mass of the two black holes of ~1.5 x 10^8 solar masses. The two nuclei appear stationary while the jets emanating from the weaker of the two nuclei appear to move out and terminate in bright hot spots. The discovery of this system has implications for the number of close binary black holes that might be sources of gravitational radiation. Green Bank Telescope observations at 22 GHz to search for water masers in this interesting system are also presented.Comment: 34 pages, 7 figures, Accepted to The Astrophysical Journa
    corecore