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Gravitational-wave memory revisited: memory from

the merger and recoil of binary black holes

Marc Favata
Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA
93106-4030

E-mail: favata@kitp.ucsb.edu

Abstract. Gravitational-wave memory refers to the permanent displacement of the test
masses in an idealized (freely-falling) gravitational-wave interferometer. Inspiraling binaries
produce a particularly interesting form of memory—the Christodoulou memory. Although it
originates from nonlinear interactions at 2.5 post-Newtonian order, the Christodoulou memory
affects the gravitational-wave amplitude at leading (Newtonian) order. Previous calculations
have computed this non-oscillatory amplitude correction during the inspiral phase of binary
coalescence. Using an “effective-one-body” description calibrated with the results of numerical
relativity simulations, the evolution of the memory during the inspiral, merger, and ringdown
phases, as well as the memory’s final saturation value, are calculated. Using this model for the
memory, the prospects for its detection are examined, particularly for supermassive black hole
binary coalescences that LISA will detect with high signal-to-noise ratios. Coalescing binary
black holes also experience center-of-mass recoil due to the anisotropic emission of gravitational
radiation. These recoils can manifest themselves in the gravitational-wave signal in the form of
a “linear” memory and a Doppler shift of the quasi-normal-mode frequencies. The prospects
for observing these effects are also discussed.

1. Introduction and motivation
In the standard picture of the gravitational-wave (GW) signal from a coalescing binary, the
oscillating amplitude starts small at early times, grows to some peak amplitude, and than decays
back to its zero-value at late times. For example, the dominant (l = m = 2) mode of the GW
polarizations from coalescing binary black holes (BBHs) follows this standard picture. However,
some sources exhibit a gravitational-wave memory in which the values of the GW polarization
amplitudes differ at late and early times:

∆hmem
+,× = lim

t→+∞h+,×(t)− lim
t→−∞h+,×(t), (1)

where t is the observer’s time. In an ideal GW detector (eg., a ring of freely-falling test masses),
the memory causes a permanent displacement that persists after the GW has passed.

Gravitational-wave memory comes in two types: The linear memory has been known since
the 1970’s ([1] and references therein) and arises from sources that produce a net change in the
time-derivatives of their source-multipole-moments. A simple example of a source with linear
memory is a binary on a hyperbolic orbit (gravitational two-body scattering) [2]. To see how
memory arises in this system, consider the leading-order transverse-traceless (TT) GW field,
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hTT
jk ∝ ÏTT

jk /R, where R is the distance to the observer, Ijk = ηM [xixj ]STF is the source
quadrupole moment, M is the total mass, η is the reduced-mass ratio, xj is the relative binary
separation vector, and STF means to take the symmetric-trace-free part. Using the Newtonian
equations of motion, one can easily see that at large separations (before and after scattering)
ẍj → 0, but ẋj is a constant for unbound systems and has a different direction at late and early
times. This leads to a memory ∆hTT

jk ∝ ηM∆[ẋj ẋk]TT/R.
Other systems with linear memory are those whose components change from being bound

to unbound (or vice versa). This includes binaries whose members are captured, disrupted, or
undergo mass loss. Gravitational-waves with linear memory have been studied in the context
of supernova explosions (see [3] for a review and references), mass loss due to neutrino emission
[4], and gamma-ray-burst jets [5]. A general formula for the linear memory is given by [6, 1]:

∆hTT
jk = ∆

N∑

A=1

4MA

R
√

1− v2
A

[
vj
Avk

A

1− vA ·N

]TT

, (2)

where A is an index that labels the N masses MA with velocities vA that are unbound in their
initial or final states (or both), and N is a unit vector that points from the source to the observer.

The nonlinear memory was discovered independently by Payne [7], Blanchet and Damour
[8], and Christodoulou [9]. It is often referred to as the “Christodoulou memory.” The
nonlinear memory arises from a change in the radiative multipole moments that is sourced
by the energy-flux of the radiated GWs. One can heuristically understand the origin of the
nonlinear memory as follows: Consider the relaxed Einstein field equations (EFE) in harmonic
gauge: ¤h̄αβ = −16πταβ , where h̄αβ is the gravitational field tensor and ταβ depends on the
matter stress-energy tensor, the Landau-Lifshitz pseudotensor tαβ

LL, and other terms quadratic in
h̄αβ [10]. Of the many nonlinear terms in tαβ

LL, there is a particular piece that is proportional to
the stress-energy tensor for GWs: T gw

jk = 1
R2

dEgw

dtdΩ njnk, where dEgw

dtdΩ is the GW energy flux and
nj is a unit radial vector. When applying the standard Green’s function to the right-hand-side
of the relaxed EFE, this piece yields the following correction term to the GW field [11]:

δhTT
jk =

4
R

∫ TR

−∞
dt′

[∫
dEgw

dt′dΩ′
n′jn

′
k

(1− n′ ·N)
dΩ′

]TT

, (3)

where TR is the retarded time. This shows that part of the distant GW field is sourced by the
loss of GW energy. Thorne [6] has shown that the nonlinear memory [Eq. (3)] can be described
in terms of the linear memory [Eq. (2)] if the unbound objects in the system are taken to be the
individual radiated gravitons with energies EA = MA/(1− v2

A)1/2 and velocities vj
A = c n′jA.

The Christodoulou memory is a particularly interesting manifestation of the nonlinearity
of general relativity. Although it arises from multipolar interactions beginning at the 2.5-
post-Newtonian (PN) order [12], the nonlinear memory affects the GW amplitude at leading
(Newtonian) order. Like GW tails the memory depends on the entire past-history of the source;
but unlike most other nonlinear PN effects, the memory is non-oscillatory and causes a slowly-
growing shift in the + polarization1.

Here we focus on the memory from merging BBHs. While the oscillatory pieces of the GW
polarizations during the inspiral are known to 3PN order [13], the Christodoulou memory has,
until recently, only been calculated to leading-(Newtonian)-order2 [11, 12]. However a proper

1 For circular orbits h× is unaffected by the Christodoulou memory. However, during the inspiral there is a DC
contribution to h× at 2.5PN order from nonlinear corrections to the radiative current octupole moment [12].
2 Blanchet et. al [13] have shown that the 0.5PN correction to the memory is exactly zero for quasi-circular orbits.
The 3PN corrections to the memory pieces of the inspiral waveform are reported in Ref. [14].
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determination of the memory’s detectability requires not only knowing how it slowly accumulates
during the inspiral, but also how the memory rapidly grows and saturates to its final value during
the merger and ringdown. Earlier estimates of the memory’s detectability have either made crude
order-of-magnitude estimates [6] or considered only the memory during the inspiral [15].

In principle numerical relativity (NR) simulations can compute the memory at all stages of the
coalescence. In practice extracting the memory from these simulations faces several difficulties:
NR simulations can best resolve the dominant l = m = 2 spin-weighted spherical-harmonic
mode of the Ψ4 curvature scalar; but for circular orbits the memory is present only in the m = 0
modes, which are smaller by 5PN orders (or about four orders-of-magnitude) during the late
inspiral. The memory is also sensitive to the two integration constants that must be determined
when computing the metric perturbations from the curvature perturbations. For simulations
that compute the metric perturbations directly, the m = 0 modes enter at the same PN order
as the l = m = 2 mode, but are still numerically smaller by nearly three orders of magnitude.
The sensitive dependence of the memory to the binary’s past history means that large errors
can result unless the simulations start with large initial binary separations. See Ref. [14] for
further discussion. In the absence of results from NR, the purpose of this work is to estimate
the evolution and saturation of the memory during the merger and ringdown phases.

2. Calculating the memory from binary black hole coalescence
The leading-order PN multipole moment expansion of the oscillatory and memory pieces of the
GW polarizations can be expressed as [16]:

h
(0)
+ − ih

(0)
× ≈ 1

8R

√
5
2π

[
(1 + cos Θ)2e2iΦI

(2)
22 + (1− cosΘ)2e−2iΦI

(2)
2−2

]
, and (4)

hmem
+ ≈ ηMhmem

384πR
sin2 Θ(17 + cos2 Θ), hmem ≡ 1

ηM

∫ TR

−∞
|I(3)

22 (τ)|2dτ ≈ 16π
η

(
∆Erad

M

)
. (5)

Here (Θ, Φ) are the direction to the observer and I
(n)
2±2 is the nth-time-derivative of the spherical

harmonic coefficient of the source mass-quadrupole moment3.
To model the evolution of the source-quadrupole moment we restrict ourselves to non-

spinning, circularized BBHs and follow the “effective-one-body” (EOB) approach (see [17] and
references therein), calibrated to the results of NR simulations. Before using the full EOB
formalism, it is instructive to first consider a bare-bones version of EOB called the minimal
waveform model (MWM). The MWM is a simple, analytic model for the inspiral, merger, and
ringdown that qualitatively captures some of the important physics while minimizing complexity.
It consists of modeling the multipole moments during the inspiral by their leading-order PN
expressions and then matching to a sum of quasi-normal modes (QNMs). During the inspiral
the source quadrupole-moment derivatives are

I
(q),insp
2±2 = 2

√
2π

5
ηMr2(∓2iω)qe∓2iϕ. (6)

Here ω ≡ ϕ̇ = (M/r3)1/2 is the orbital frequency, r = rm(1− T/τrr)1/4 is the orbital separation,
ϕ is the orbital phase, τrr = (5/256)(M/η)(rm/M)4, T = t− tm, and rm is the orbital separation
at the “matching time” tm. For t > tm the quadrupole-moment derivatives are modeled as a
sum of ringdown QNMs:

I
(2+p),ring
2±2 =

nmax∑

n=0

(−σ22n)pA22ne−σ22nT , (7)

3 These “scalar” moments are related to the more familiar STF-source-quadrupole moment Iij via I2m =
(16π

√
3/15)IijY2m ∗

ij , where the Y2m
ij are related to the ordinary spherical harmonics by Y 2m = Y2m

ij ninj [10].
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Figure 1. The left plot shows the evolution and saturation of the memory hmem near the
merger time. The solid (black) line uses the full-EOB formalism calibrated to numerical relativity
simulations as in Ref. [20]. The dashed-dotted (green) line uses this same formalism but without
the EOB amplitude correction factors fNQC

22 F22. The dotted (cyan) curve is the minimal-
waveform model. The short-dashed (blue) curve is the minimal-waveform model multiplied by a
“fudge” factor≈ 0.77 so that it matches the full-EOB curve at late times. The red (dashed) curve
is similar to the treatment in [15]: the inspiral memory is truncated at an orbital separation
r = 5M . Note that the PN/EOB corrections tend to reduce the memory’s magnitude. The
right plot shows the h+ polarization with memory (sold/blue) and without (dashed/red). This
is computed using the full-EOB model. The inset plots show the early-time evolution. Both
plots are for an equal-mass binary with the matching to the ringdown signal at tm/M ≈ 3522.

where σlmn = iωlmn + τ−1
lmn, with QNM angular frequencies ωlmn and damping times τlmn given

in Ref. [18]. These QNMs depend on the final mass Mf and the dimensionless spin parameter
af of the BH merger remnant and are determined by NR simulations [eg., the fits in Eqs. (C5)-
(C6) of [19]]. The coefficients A22n are determined by matching Eqs. (6)-(7) at t = tm for
2 ≤ (q, p + 2) ≤ nmax + 2. Substituting these relations into hmem yields a simple expression for
the memory’s evolution:

hmem
MWM =

8πM

r(T )
H(−T )+





8πM

rm
+

1
ηM

nmax∑

n,n′=0

σ22nσ∗22n′

σ22n + σ∗22n′
A22nA∗22n′

[
1− e−(σ22n+σ∗

22n′ )T
]


H(T ),

(8)
where H(T ) is the Heaviside function. Choosing nmax = 2 and rm = 3M (corresponding to the
light-ring of a Schwarzschild BH), yields a final saturation value of the memory ∆hmem

MWM ≈ 16.
In addition to the MWM, we can model the evolution of I2±2 using the EOB approach of

Ref. [20], where the freely adjustable EOB parameters are determined by fitting to simulations
from the Jena and Caltech/Cornell NR groups. The main differences between the MWM and
the full-EOB calculation are: (i) the EOB equations of motion are solved to determine the
binary separation and orbital frequency during the inspiral, (ii) PN correction factors to the
amplitude of I

(q),insp
2±2 are included as in Ref. [20], and (iii) we match to 5 QNMs at 5 points near

the EOB-deformed light-ring for q = p + 2 = 2. The results of the MWM and full-EOB model
are presented in Figure 1. Further details are presented in Ref. [16].

These results can be used to compute the signal-to-noise ratio (SNR) for the memory signal
[16]. For initial LIGO the memory will be undetectable, but advanced LIGO may have a slim
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chance of detecting the memory from nearby BBH mergers (SNR ≈ 8 for a 50M¯/50M¯ binary
at 20 Mpc). LISA has good prospects for detecting the memory from supermassive BBH mergers
at large redshifts: for example a 105M¯/105M¯ binary at redshift z = 2 will have a SNR ≈ 9.

3. Signature of radiation recoil in the gravitational-wave signal
Numerical relativity (NR) calculations of gravitational radiation recoil have found that BHs
can receive kicks as large as ∼ 175 km/s for nonspinning BHs [21], ∼ 450 km/s for equal-mass
BHs with spins anti-aligned along the orbital angular momentum [22], and ∼ 4000km/s for the
“super-kick” configuration (spins anti-aligned in the orbital plane) [23]. These moderate to large
recoils can have interesting electromagnetic signatures [24, 25, 26, 27, 28, 29, 30, 31], and can
also leave signatures in the GW signal. This GW signature could confirm the nature of the recoil
(anisotropic GW emission vs. 3-body recoil) and determine the kick magnitude and direction.

During the inspiral the center-of-mass recoil is a negligible high-PN-order effect; but if the
masses and spins are accurately determined from the inspiral waves, the final kick after the
merger can be inferred from NR simulations. Following the merger the recoil grows large enough
to leave potentially detectable effects on the GW signal. One of these effects is an additional
contribution to the GW memory. This “kick memory” arises from Thorne’s memory formula
[Eq. (2)] for a system of N unbound masses:

∆hTT
jk =

N−1∑

A=1

4Egraviton
A

R

[
nj

Ank
A

1− nA ·N

]TT

+
4Mf

R
√

1− V 2
kick

[
V j

kickV
k
kick

1− Vkick ·N

]TT

. (9)

Here the sum in the first term is over the N − 1 individual gravitons radiated throughout the
entire coalescence; this is the Christodoulou memory [δhTT

jk ; Eq. (3)]. The second term is the

memory (∆hTT,kick
jk ) from the remaining particle in the system—the kicked BH with final mass

Mf and recoil velocity V kick
j . Since the Christodoulou memory roughly scales with the radiated

energy, ∆hChris. ∼ 4∆Erad/R, we can see that the ratio of the two memories scales like

∆hkick

∆hChris.
∼ V 2

kick

∆Erad/M
∼ 3× 10−3

(
V kick

3000 km/s

)2 (
3%

∆Erad/M

)
. (10)

Since plausible SNRs for the Christodoulou memory are < 100, it seems unlikely that the “kick
memory” will be easily detected.

Prospects are better for detecting a Doppler shift of the QNM oscillations. Measuring this
Doppler shift relies on accurately measuring the masses and spins from the inspiral, and using
NR simulations to determine the rest-frame QNMs. Comparison with the observed QNMs
then determines the line-of-sight (LOS) recoil velocity, VLOS = Vkick · N . The accuracy with
which VLOS can be determined then depends on how accurately the QNMs can be measured.
Using Eq. (7.2) of Ref. [18], we can roughly estimate the relative error in the LOS recoil:
σVLOS

/VLOS ∼ 2/(ρVLOS), where ρ is the SNR from the QNM signal. For large SNRs and
moderately large kicks, this implies a relative error of a few tens of percent.

4. Conclusions
While previous works have computed the memory only during the inspiral, here the memory is
computed through the merger and ringdown. The calculation has used a simple, fully-analytic
model for the coalescence as well as a previously developed effective-one-body (EOB) approach
calibrated to numerical simulations. Prospects for detecting the memory are poor for initial and
advanced LIGO, but are promising for supermassive BH mergers that LISA will detect with high
signal-to-noise ratios (& 1000). Binaries that recoil after merger also show a linear memory, as
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well as a Doppler shift of the quasi-normal-mode frequencies. These effects will be difficult to
detect except in strong sources with moderately large kicks.

Although challenging, it will be important for numerical relativity simulations to test the
semi-analytic computations of the memory discussed here. Future Mock LISA Data Challenges
[32] should also consider including waveforms with memory in their data sets. This will provide
a better understanding of LISA’s ability to measure this interesting effect.
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