845 research outputs found

    Influence of peptidylarginine deiminase type 4 genotype and shared epitope on clinical characteristics and autoantibody profile of rheumatoid arthritis.

    Get PDF
    Background: Recent evidence suggests that distinction of subsets of rheumatoid arthritis (RA) depending on anticyclic citrullinated peptide antibody (anti-CCP) status may be helpful in distinguishing distinct aetiopathologies and in predicting the course of disease. HLA-DRB1 shared epitope (SE) and peptidylarginine deiminase type 4 (PADI4) genotype, both of which have been implicated in anti-CCP generation, are assumed to be associated with RA. Objectives: To elucidate whether PADI4 affects the clinical characteristics of RA, and whether it would modulate the effect of anti-CCPs on clinical course. The combined effect of SE and PADI4 on autoantibody profile was also analysed. Methods: 373 patients with RA were studied. SE, padi4_94C.T, rheumatoid factor, anti-CCPs and antinuclear antibodies (ANAs) were determined. Disease severity was characterised by cumulative therapy intensity classified into ordinal categories (CTI-1 to CTI-3) and by Steinbrocker score. Results: CTI was significantly associated with disease duration, erosive disease, disease activity score (DAS) 28 and anti-CCPs. The association of anti-CCPs with CTI was considerably influenced by padi4_94C.T genotype (C/C: ORadj=0.93, padj=0.92; C/T: ORadj=2.92, padj=0.093; T/T: ORadj=15.3, padj=0.002). Carriage of padi4_94T exhibited a significant trend towards higher Steinbrocker scores in univariate and multivariate analyses. An association of padi4_94C.T with ANAs was observed, with noteworthy differences depending on SE status (SE2: ORadj=6.20, padj,0.04; SE+: ORadj=0.36, padj=0.02) and significant heterogeneity between the two SE strata (p=0.006). Conclusions: PADI4 genotype in combination with anti- CCPs and SE modulates clinical and serological characteristics of RA

    Chiral photoelectron angular distributions from ionization of achiral atomic and molecular species

    Full text link
    We show that the combination of two achiral components - atomic or molecular target plus a circularly polarized photon - can yield chirally structured photoelectron angular distributions. For photoionization of CO, the angular distribution of carbon K-shell photoelectrons is chiral when the molecular axis is neither perpendicular nor (anti-)parallel to the light propagation axis. In photo-double-ionization of He, the distribution of one electron is chiral, if the other electron is oriented like the molecular axis in the former case and if the electrons are distinguishable by their energy. In both scenarios, the circularly polarized photon defines a plane with a sense of rotation and an additional axis is defined by the CO molecule or one electron. This is sufficient to establish an unambiguous coordinate frame of well-defined handedness. To produce a chirally structured electron angular distribution, such a coordinate frame is necessary, but not sufficient. We show that additional electron-electron interaction or scattering processes are needed to create the chiral angular distribution

    Breakdown of the Two-Step Model in K-Shell Photoemission and Subsequent Decay Probed by the Molecular-Frame Photoelectron Angular Distributions of CO_2

    Get PDF
    We report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay

    Agricultural Performance of Diverse Pastures of Complementary Species and Monoculture Pastures Defoliated According to the Leaf Regrowth Stage Window of Opportunity Criterion

    Get PDF
    In a diverse pasture of complementary species (DPCS), individual species fulfil agro-ecological functions that confer growth asynchrony and complementarity of ecosystem functions. These attributes provide yield consistency with a more even forage supply pattern across the year compared to monocultures. A common leaf regrowth stage window opportunity (LSWO) for the diverse species enables pasture defoliation that stimulates growth and persistence. The study assessed seasonal and annual growth traits of Lolium perenne (Lp), Bromus valdivianus (Bv) and Dactylis glomerata (Dg) as single grass species (Mono) sown with Trifolium repens (Tr) and as DPCS with the four species (Lp+Bv+Dg+Tr=Mix). The defoliation criteria applied (LSWO of a target species: Lp, Bv or Dg) resulted in eleven grazing events for MonoLp and MixLp, ten grazing events for MonoBv and MixBv, and nine grazing events for MonoDg and MixDg in a year. MixBv and MixDg displayed synchronized overlaps of the three species LSWOs during the seasons and across the year. MixLp had Bv and Dg being grazed slightly earlier than their LSWOs. There were no significant differences in annual herbage accumulation for all treatments. Significant differences were found within seasons, and the seasonality of the pasture growth was reduced in the DPCS when compared to their respective Mono establishment. This resulted in a more evenly distributed pasture feed resource throughout the year and can mitigate the negative impacts of extreme climatic events (longer periods of soil water restriction or saturation). The LSWO criterion enabled the successful management of monocultures and DPCS

    Interatomic-Coulombic-decay-induced recapture of photoelectrons in helium dimers

    Full text link
    We investigate the onset of photoionization shakeup induced interatomic Coulombic decay (ICD) in He2 at the He+*(n = 2) threshold by detecting two He+ ions in coincidence. We find this threshold to be shifted towards higher energies compared to the same threshold in the monomer. The shifted onset of ion pairs created by ICD is attributed to a recapture of the threshold photoelectron after the emission of the faster ICD electron.Comment: 5 Pages, 2 Figure

    Vibrationally Resolved Decay Width of Interatomic Coulombic Decay in HeNe

    Full text link
    We investigate the ionization of HeNe from below the He 1s3p excitation to the He ionization threshold. We observe HeNe+^+ ions with an enhancement by more than a factor of 60 when the He side couples resonantly to the radiation field. These ions are an experimental proof of a two-center resonant photoionization mechanism predicted by Najjari et al. [Phys. Rev. Lett. 105, 153002 (2010)]. Furthermore, our data provide electronic and vibrational state resolved decay widths of interatomic Coulombic decay (ICD) in HeNe dimers. We find that the ICD lifetime strongly increases with increasing vibrational state.Comment: 7 pages, 5 figure

    Correlated multi-electron dynamics in ultrafast laser pulse - atom interactions

    Full text link
    We present the results of the detailed experimental study of multiple ionization of Ne and Ar by 25 and 7 fs laser pulses. For Ne the highly correlated "instantaneous" emission of up to four electrons is triggered by a recollisional electron impact, whereas in multiple ionization of Ar different mechanisms, involving field ionization steps and recollision-induced excitations, play a major role. Using few-cycle pulses we are able to suppress those processes that occur on time scales longer than one laser cycle.Comment: 9 pages, 4 figure

    Classical and quantum-mechanical treatments of nonsequential double ionization with few-cycle laser pulses

    Full text link
    We address nonsequential double ionization induced by strong, linearly polarized laser fields of only a few cycles, considering a physical mechanism in which the second electron is dislodged by the inelastic collision of the first electron with its parent ion. The problem is treated classically, using an ensemble model, and quantum-mechanically, within the strong-field and uniform saddle-point approximations. In the latter case, the results are interpreted in terms of "quantum orbits", which can be related to the trajectories of a classical electron in an electric field. We obtain highly asymmetric electron momentum distributions, which strongly depend on the absolute phase, i.e., on the phase difference between the pulse envelope and its carrier frequency. Around a particular value of this parameter, the distributions shift from the region of positive to that of negative momenta, or vice-versa, in a radical fashion. This behavior is investigated in detail for several driving-field parameters, and provides a very efficient method for measuring the absolute phase. Both models yield very similar distributions, which share the same physical explanation. There exist, however, minor discrepancies due to the fact that, beyond the region for which electron-impact ionization is classically allowed, the yields from the quantum mechanical computation decay exponentially, whereas their classical counterparts vanish.Comment: 12 pages revtex, 12 figures (eps files

    Two-particle interference of electron pairs on a molecular level

    Full text link
    We investigate the photo-doubleionization of H2H_2 molecules with 400 eV photons. We find that the emitted electrons do not show any sign of two-center interference fringes in their angular emission distributions if considered separately. In contrast, the quasi-particle consisting of both electrons (i.e. the "dielectron") does. The work highlights the fact that non-local effects are embedded everywhere in nature where many-particle processes are involved
    • …
    corecore