10,848 research outputs found
Seeding of supercooled polyethylene with extended chain crystals
Seeding of supercooled polyethylene with extended chain crystal
Harmonic generation and filamentation: when secondary radiations have primary consequences
In this Letter, it is experimentally and theoretically shown that weak odd
harmonics generated during the propagation of an infrared ultrashort
ultra-intense pulse unexpectedly modify the nonlinear properties of the medium
and lead to a strong modification of the propagation dynamics. This result is
in contrast with all current state-of-the-art propagation model predictions, in
which secondary radiations, such as third harmonic, are expected to have a
negligible action upon the fundamental pulse propagation. By analysing full
three-dimensional ab initio quantum calculations describing the microscopic
atomic optical response, we have identified a fundamental mechanism resulting
from interferences between a direct ionization channel and a channel involving
one single ultraviolet photon. This mechanism is responsible for wide
refractive index modifications in relation with significant variation of the
ionization rate. This work paves the way to the full physical understanding of
the filamentation mechanism and could lead to unexplored phenomena, such as
coherent control of the filamentation by harmonic seeding.Comment: 7 pages, 5 figure
Tunable Electron Multibunch Production in Plasma Wakefield Accelerators
Synchronized, independently tunable and focused J-class laser pulses are
used to release multiple electron populations via photo-ionization inside an
electron-beam driven plasma wave. By varying the laser foci in the laboratory
frame and the position of the underdense photocathodes in the co-moving frame,
the delays between the produced bunches and their energies are adjusted. The
resulting multibunches have ultra-high quality and brightness, allowing for
hitherto impossible bunch configurations such as spatially overlapping bunch
populations with strictly separated energies, which opens up a new regime for
light sources such as free-electron-lasers
Near infrared few-cycle pulses for high harmonic generation
We report on the development of tunable few-cycle pulses with central
wavelengths from 1.6 um to 2 um. Theses pulses were used as a proof of
principle for high harmonic generation in atomic and molecular targets. In
order to generate such pulses we produced a filament in a 4 bar krypton cell.
Spectral broadening by a factor of 2 to 3 of a 40 fs near infrared input pulse
was achieved. The spectrally broadened output pulses were then compressed by
fused silica plates down to the few-cycle regime close to the Fourier limit.
The auto-correlation of these pulses revealed durations of about 3 cycles for
all investigated central wavelengths. Pulses with a central wavelength of 1.7
um and up to 430 uJ energy per pulse were employed to generate high order
harmonics in Xe, Ar and N2. Moving to near infrared few-cycle pulses opens the
possibility to operate deeply in the non-perturbative regime with a Keldysh
parameter smaller than 1. Hence, this source is suitable for the study of the
non-adiabatic tunneling regime in most generating systems used for high order
harmonic generation and attoscience.Comment: 12 pages, 4 figure
Time-dependent calculation of ionization in Potassium at mid-infrared wavelengths
We study the dynamics of the Potassium atom in the mid-infrared, high
intensity, short laser pulse regime. We ascertain numerical convergence by
comparing the results obtained by the direct expansion of the time-dependent
Schroedinger equation onto B-Splines, to those obtained by the eigenbasis
expansion method. We present ionization curves in the 12-, 13-, and 14-photon
ionization range for Potassium. The ionization curve of a scaled system, namely
Hydrogen starting from the 2s, is compared to the 12-photon results. In the
13-photon regime, a dynamic resonance is found and analyzed in some detail. The
results for all wavelengths and intensities, including Hydrogen, display a
clear plateau in the peak-heights of the low energy part of the Above Threshold
Ionization (ATI) spectrum, which scales with the ponderomotive energy Up, and
extends to 2.8 +- 0.5 Up.Comment: 15 two-column pages with 15 figures, 3 tables. Accepted for
publication in Phys. Rev A. Improved figures, language and punctuation, and
made minor corrections. We also added a comparison to the ADK theor
Nkx2-5 and Sarcospan genetically interact in the development of the muscular ventricular septum of the heart
The muscular ventricular septum separates the flow of oxygenated and de-oxygenated blood in air-breathing vertebrates. Defects within it, termed muscular ventricular septal defects (VSDs), are common, yet less is known about how they arise than rarer heart defects. Mutations of the cardiac transcription factor NKX2-5 cause cardiac malformations, including muscular VSDs. We describe here a genetic interaction between Nkx2-5 and Sarcospan (Sspn) that affects the risk of muscular VSD in mice. Sspn encodes a protein in the dystrophin-glycoprotein complex. Sspn knockout (Sspn(KO)) mice do not have heart defects, but Nkx2-5(+/−)/Sspn(KO) mutants have a higher incidence of muscular VSD than Nkx2-5(+/−) mice. Myofibers in the ventricular septum follow a stereotypical pattern that is disrupted around a muscular VSD. Subendocardial myofibers normally run in parallel along the left ventricular outflow tract, but in the Nkx2-5(+/−)/Sspn(KO) mutant they commonly deviate into the septum even in the absence of a muscular VSD. Thus, Nkx2-5 and Sspn act in a pathway that affects the alignment of myofibers during the development of the ventricular septum. The malalignment may be a consequence of a defect in the coalescence of trabeculae into the developing ventricular septum, which has been hypothesized to be the mechanistic basis of muscular VSDs
Aging dynamics of non-linear elastic interfaces: the Kardar-Parisi-Zhang equation
In this work, the out-of-equilibrium dynamics of the Kardar-Parisi-Zhang
equation in (1+1) dimensions is studied by means of numerical simulations,
focussing on the two-times evolution of an interface in the absence of any
disordered environment. This work shows that even in this simple case, a rich
aging behavior develops. A multiplicative aging scenario for the two-times
roughness of the system is observed, characterized by the same growth exponent
as in the stationary regime. The analysis permits the identification of the
relevant growing correlation length, accounting for the important scaling
variables in the system. The distribution function of the two-times roughness
is also computed and described in terms of a generalized scaling relation.
These results give good insight into the glassy dynamics of the important case
of a non-linear elastic line in a disordered medium.Comment: 14 pages, 6 figure
A milestone toward understanding PDR properties in the extreme environment of LMC-30Dor
More complete knowledge of galaxy evolution requires understanding the
process of star formation and interaction between the interstellar radiation
field and the interstellar medium in galactic environments traversing a wide
range of physical parameter space. Here we focus on the impact of massive star
formation on the surrounding low metallicity ISM in 30 Doradus in the Large
Magellanic Cloud. A low metal abundance, as is the case of some galaxies of the
early universe, results in less ultra-violet shielding for the formation of the
molecular gas necessary for star formation to proceed. The half-solar
metallicity gas in this region is strongly irradiated by the super star cluster
R136, making it an ideal laboratory to study the structure of the ISM in an
extreme environment. Our spatially resolved study investigates the gas heating
and cooling mechanisms, particularly in the photo-dissociation regions where
the chemistry and thermal balance are regulated by far-ultraviolet photons (6
eV< h\nu <13.6 eV).
We present Herschel observations of far-infrared fine-structure lines
obtained with PACS and SPIRE/FTS. We have combined atomic fine-structure lines
from Herschel and Spitzer observations with ground-based CO data to provide
diagnostics on the properties and the structure of the gas by modeling it with
the Meudon PDR code. We derive the spatial distribution of the radiation field,
the pressure, the size, and the filling factor of the photodissociated gas and
molecular clouds. We find a range of pressure of ~ 10^5 - 1.7x10^6 cm^{-3} K
and a range of incident radiation field G_UV ~ 10^2 - 2.5x10^4 through PDR
modeling. Assuming a plane-parallel geometry and a uniform medium, we find a
total extinction of 1-3 mag , which correspond to a PDR cloud size of 0.2 to
3pc, with small CO depth scale of 0.06 to 0.5pc. We also determine the three
dimensional structure of the gas. (Abridged)Comment: 20 pages, 23 figures, accepted in A&
Dissipative collisions in O + Al at E=116 MeV
The inclusive energy distributions of fragments (3Z7) emitted in
the reaction O + Al at 116 MeV have been measured in
the angular range = 15 - 115. A non-linear
optimisation procedure using multiple Gaussian distribution functions has been
proposed to extract the fusion-fission and deep inelastic components of the
fragment emission from the experimental data. The angular distributions of the
fragments, thus obtained, from the deep inelastic component are found to fall
off faster than those from the fusion-fission component, indicating shorter
life times of the emitting di-nuclear systems. The life times of the
intermediate di-nuclear configurations have been estimated using a diffractive
Regge-pole model. The life times thus extracted (
Sec.) are found to decrease with the increase in the fragment charge. Optimum
Q-values are also found to increase with increasing charge transfer i.e. with
the decrease in fragment charge.Comment: 9 pages, 4 figures, 1 tabl
- …
