220 research outputs found

    Towards a wave-extraction method for numerical relativity: IV. Testing the quasi-Kinnersley method in the Bondi-Sachs framework

    Get PDF
    We present a numerical study of the evolution of a non-linearly disturbed black hole described by the Bondi--Sachs metric, for which the outgoing gravitational waves can readily be found using the news function. We compare the gravitational wave output obtained with the use of the news function in the Bondi--Sachs framework, with that obtained from the Weyl scalars, where the latter are evaluated in a quasi-Kinnersley tetrad. The latter method has the advantage of being applicable to any formulation of Einstein's equations---including the ADM formulation and its various descendants---in addition to being robust. Using the non-linearly disturbed Bondi--Sachs black hole as a test-bed, we show that the two approaches give wave-extraction results which are in very good agreement. When wave extraction through the Weyl scalars is done in a non quasi-Kinnersley tetrad, the results are markedly different from those obtained using the news function.Comment: 12 pages, 11 figure

    A Scheme to Numerically Evolve Data for the Conformal Einstein Equation

    Get PDF
    This is the second paper in a series describing a numerical implementation of the conformal Einstein equation. This paper deals with the technical details of the numerical code used to perform numerical time evolutions from a "minimal" set of data. We outline the numerical construction of a complete set of data for our equations from a minimal set of data. The second and the fourth order discretisations, which are used for the construction of the complete data set and for the numerical integration of the time evolution equations, are described and their efficiencies are compared. By using the fourth order scheme we reduce our computer resource requirements --- with respect to memory as well as computation time --- by at least two orders of magnitude as compared to the second order scheme.Comment: 20 pages, 12 figure

    A Subsumption Agent for Collaborative Free Improvisation

    Get PDF
    This paper discusses the design and evaluation of an artificial agent for collaborative musical free improvisation. The agent provides a means to investigate the underpinnings of improvisational interaction. In connection with this general goal, the system is also used here to explore the implementation of a collaborative musical agent using a specific robotics architecture, Subsumption. The architecture of the system is explained, and its evaluation in an empirical study with expert improvisors is discussed. A follow-up study using a second iteration of the system is also presented. The system design and connected studies bring together Subsumption robotics, ecological psychology, and musical improvisation, and contribute to an empirical grounding of an ecological theory of improvisation

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Challenges for adaptation in agent societies

    Full text link
    The final publication is available at Springer via http://dx.doi.org/[insert DOIAdaptation in multiagent systems societies provides a paradigm for allowing these societies to change dynamically in order to satisfy the current requirements of the system. This support is especially required for the next generation of systems that focus on open, dynamic, and adaptive applications. In this paper, we analyze the current state of the art regarding approaches that tackle the adaptation issue in these agent societies. We survey the most relevant works up to now in order to highlight the most remarkable features according to what they support and how this support is provided. In order to compare these approaches, we also identify different characteristics of the adaptation process that are grouped in different phases. Finally, we discuss some of the most important considerations about the analyzed approaches, and we provide some interesting guidelines as open issues that should be required in future developments.This work has been partially supported by CONSOLIDER-INGENIO 2010 under grant CSD2007-00022, the European Cooperation in the field of Scientific and Technical Research IC0801 AT, and projects TIN2009-13839-C03-01 and TIN2011-27652-C03-01.Alberola Oltra, JM.; Julian Inglada, VJ.; GarcĂ­a-Fornes, A. (2014). Challenges for adaptation in agent societies. Knowledge and Information Systems. 38(1):1-34. https://doi.org/10.1007/s10115-012-0565-yS134381Aamodt A, Plaza E (1994) Case-based reasoning; foundational issues, methodological variations, and system approaches. AI Commun 7(1):39–59Abdallah S, Lesser V (2007) Multiagent reinforcement learning and self-organization in a network of agents. In: Proceedings of the sixth international joint conference on autonomous agents and multi-agent systems, pp 172–179Abdu H, Lutfiyya H, Bauer MA (1999) A model for adaptive monitoring configurations. In: Proceedings of the VI IFIP/IEEE IM conference on network management, pp 371–384Alberola JM, Julian V, Garcia-Fornes A (2011) A cost-based transition approach for multiagent systems reorganization. In: Proceedings of the 10th international conference on aut. agents and MAS (AAMAS11), pp 1221–1222Alberola JM, Julian V, Garcia-Fornes A (2012) Multi-dimensional transition deliberation for organization adaptation in multiagent systems. In: Proceedings of the 11th international conference on aut. agents and MAS (AAMAS12) (in press)Argente E, Julian V, Botti V (2006) Multi-agent system development based on organizations. Electron Notes Theor Comput Sci 160(3):55–71Argente E, Botti V, Carrascosa C, Giret A, Julian V, Rebollo M (2011) An abstract architecture for virtual organizations: the Thomas approach. Knowl Inf Syst 29(2):379–403Ashford SJ, Taylor MS (1990) Adaptation to work transitions. An integrative approach. Res Pers Hum Resour Manag 8:1–39Ashford SJ, Blatt R, Walle DV (2003) Reflections on the looking glass: a review of research on feedback-seeking behavior in organizations. J Manag 29(6):773–799Astley WG, Van de Ven AH (1983) Central perspectives and debates in organization theory. Adm Sci Q 28(2):245–273Bond AH, Gasser L (1988) A survey of distributed artificial intelligence readings in distributed artificial intelligence. Morgan Kaufmann, Los AltosBou E, LĂłpez-SĂĄnchez M, RodrĂ­guez-Aguilar JA (2006) Adaptation of autonomic electronic institutions through norms and institutional agents In: Engineering societies in the agents world. Number LNAI 445, Springer, Dublin, pp 300–319Bou E, LĂłpez-SĂĄnchez M, RodrĂ­guez-Aguilar JA (2007) Towards self-configuration in autonomic electronic institutions. In: COIN 2006 workshops. Number LNAI 4386, pp 220–235Bou E, LĂłpez-SĂĄnchez M, RodrĂ­guez-Aguilar JA (2008) Using case-based reasoning in autonomic electronic institutions. In: Proceedings of the 2007 international conference on coordination, organizations, institutions, and norms in agent systems III, pp 125–138Brett JM, Feldman DC, Weingart LR (1990) Feedback-seeking behavior of new hires and job changers. J Manag 16:737–749Bulka B, Gaston ME, desJardins M (2007) Local strategy learning in networked multi-agent team formation. Auton Agents Multi-Agent Syst 15(1):29–45Campos J, LĂłpez-SĂĄnchez M, Esteva M (2009) Assistance layer, a step forward in multi-agent systems. In: Coordination support international joint conference on autonomous agents and multiagent systems (AAMAS), pp 1301–1302Campos J, Esteva M, LĂłpez-SĂĄnchez M, Morales J, SalamĂł M (2011) Organisational adaptation of multi-agent systems in a peer-to-peer scenario. Computing 91(2):169–215Carley KM, and Gasser L (1999) Computational organization theory. Multiagent systems: a modern approach to distributed artificial intelligence. MIT Press, Cambridge, pp 299–330Carvalho G, Almeida H, Gatti M, Vinicius G, Paes R, Perkusich, A, Lucena C (2006) Dynamic law evolution in governance mechanisms for open multi-agent systems. In: Second workshop on software engineering for agent-oriented systemsCernuzzi L, Zambonelli F (2011) Adaptive organizational changes in agent-oriented methodologies. Knowl Eng Rev 26(2):175–190Cheng BH, Lemos R, Giese H, Inverardi P, Magee J (2009) Software engineering for self-adaptive systems: a research roadmap, pp 1–26Corkill DD, Lesser VR (1983) The use of meta-level control for coordination in a distributed problem solving networks. In: Proceedings of the eighth international joint conference on artificial intelligence. IEEE Computer Society Press, pp 748–756Corkill DD, Lander SE (1998) Diversity in agent organizations. Object Mag 8(4):41–47de Paz JF, Bajo J, GonzĂĄlez A, RodrĂ­guez S, Corchado JM (2012) Combining case-based reasoning systems and support vector regression to evaluate the atmosphere-ocean interaction. Knowl Inf Syst 30(1):155–177DeLoach SA, Matson E (2004) An organizational model for designing adaptive multiagent systems. In: The AAAI-04 workshop on agent organizations: theory and practice (AOTP), pp 66–73DeLoach SA, Oyeman W, Matson E (2008) A capabilities-based model for adaptive organizations. Auton Agents Multi-Agent Syst 16:13–56Dignum V, Dignum F (2001) Modelling agent societies: co-ordination frameworks and institutions progress in artificial intelligence. LNAI 2258, pp 191–204Dignum V (2004) A model for organizational interaction: based on agents, founded in logic. PhD dissertation, Universiteit Utrecht. SIKS dissertation series 2004-1Dignum V, Dignum F, Sonenberg L (2004) Towards dynamic reorganization of agent societies. In: Proceedings of the workshop on coordination in emergent agent societies, pp 22–27Dignum V, Dignum F (2006) Exploring congruence between organizational structure and task performance: a simulation approach coordination, organization, institutions and norms in agent systems I. In: Proceedings of the ANIREM ’05/OOOP ’05, pp 213–230Dignum V, Dignum F (2007) A logic for agent organizations. In: Proceedings of the multi-agent logics, languages, and organisations federated workshops (MALLOW ’007), formal approaches to multi-agent systems (FAMAS ’007) workshopFox MS (1981) Formalizing virtual organizations. IEEE Transact Syst Man Cybern 11(1):70–80Gaston ME, desJardins M (2005) Agent-organized networks for dynamic team formation. In: Proceedings of the fourth international joint conference on autonomous agents and multiagent systems, pp 230–237Gaston ME, desJardins M (2008) The effect of network structure on dynamic team formation in multi-agent systems. Comput Intell 24(2):122–157Norbert G, Philippe M (1997) The reorganization of societies of autonomous agents. In: MAAMAW-97. Springer, London, pp 98–111Goldman CV, Rosenschein JS (1997) Evolving organizations of agents American association for artificial intelligence. In: Multiagent learning workshop at AAAI97Greve HR (1998) Performance, aspirations, and risky organizational change. Adm Sci Quart 43(1):58–86Guessoum Z, Ziane M, Faci N (2004) Monitoring and organizational-level adaptation of multi-agent systems. In: Proceedings of the AAMAS ’04, pp 514–521Hoogendoorn M, Treur J (2006) An adaptive multi-agent organization model based on dynamic role allocation. In: Proceedings of the IAT ’06, pp 474–481Horling B, Benyo B, Lesser V (1999) Using self-diagnosis to adapt organizational structures. In: Proceedings of the 5th international conference on autonomous agents, pp 529–536Horling B, Lesser V (2005) A survey of multi-agent organizational paradigms. Knowl Eng Rev 19(4): 281–316Hrebiniak LG, Joyce WF (1985) Organizational adaptation: strategic choice and environmental determinism. Adm Sci Quart 30(3):336–349HĂŒbner JF, Sichman JS, Boissier O (2002) MOISE+: towards a structural, functional, and deontic model for MAS organization. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems, pp 501–502HĂŒbner JF, Sichman JS, Boissier O (2004) Using the MOISE+ for a cooperative framework of MAS reorganisation. In: Proceedings of the 17th Brazilian symposium on artificial intelligence (SBIA ’04), vol 3171, pp 506–515HĂŒbner JF, Boissier O, Sichman JS (2005) Specifying E-alliance contract dynamics through the MOISE + reorganisation process Anais do V Encontro Nacional de Inteligde Inteligncia Artificial (ENIA 2005)Jennings NR (2001) An agent-based approach for building complex software systems. Commun ACM 44(4):35–41Kamboj S, Decker KS (2006) Organizational self-design in semi-dynamic environments In: 2007 IJCAI workshop on agent organizations: models and simulations (AOMS@IJCAI), pp 335–337Katz D, Kahn RL (1966) The social psychology of organizations. Wiley, New YorkKelly D, Amburgey TL (1991) Organizational inertia and momentum: a dynamic model of strategic change. Acad Manag J 34(3):591–612Kephart J, Chess DM (2003) The vision of autonomic computing. Computer 36(1):41–50Kim DH (1993) The link between individual and organizational learning. Sloan Manag Rev 35(1):37–50Kota R, Gibbins N, Jennings NR (2009a) Decentralised structural adaptation in agent organisations organized adaptation in multi-agent systems, pp 54–71Kota R, Gibbins N, Jennings NR (2009b) Self-organising agent organisations. In: Proceedings of the 8th international conference on autonomous agents and multiagent systems (AAMAS 2009)Kota R, Gibbins N, Jennings NR (2012) Decentralised approaches for self-adaptation in agent organisations. ACM Trans Auton Adapt Syst 7(1):1–28Kotter J, Schlesinger L (1979) Choosing strategies for change. Harv Bus Rev 106–1145Lesser VR (1998) Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Auton Agents Multi-Agent Syst 89–111Levitt B, March JG (1988) Organizational learning. Annu Rev Sociol 14:319–340Luck M, McBurney P, Shehory O, Willmott S (2005) Agent technology: computing as interaction (a roadmap for agent based computing)Mathieu P, Routier JC, Secq Y (2002a) Dynamic organization of multi-agent systems. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: part 1, pp 451–452Mathieu P, Routier JC, Secq Y (2002b) Principles for dynamic multi-agent organizations. In: Proceedings of the 5th Pacific rim international workshop on multi agents: intelligent agents and multi-agent systems, pp 109–122Matson E, DeLoach S (2003) Using dynamic capability evaluation to organize a team of cooperative, autonomous robots. In: Proceedings of the 2003 international conference on artificial intelligence (IC-AI ’03), Las Vegas, pp 23–26Matson E, DeLoach S (2004) Enabling intra-robotic capabilities adaptation using an organization-based multiagent system. ICRA, pp 2135–2140Matson E, DeLoach S (2005) Formal transition in agent organizations. In: IEEE international conference on knowledge intensive multiagent systems (KIMAS ’05)Matson E, Bhatnagar R (2006) Properties of capability based agent organization transition. In: Proceedings of the IEEE/WIC/ACM international conference on intelligent agent technology IAT ’06, pp 59–65Morales J, LĂłpez-SĂĄnchez M, Esteva, M (2011) Using experience to generate new regulations. In: Proceedings of the twenty-second international joint conference on artificial Intelligence (IJCAI-11), pp 307–312Muhlestein D, Lim S (2011) Online learning with social computing based interest sharing. Knowl Inf Syst 26(1):31–58Nair R, Tambe M, Marsella S (2003) Role allocation and reallocation in multiagent teams: towards a practical analysis. In: Proceedings of the second AAMAS ’03, pp 552–559Orlikowski WJ (1996) Improvising organizational transformation over time: a situated change perspective. Inf Syst Res 7(1):63–92Panait L, Luke S (2005) Cooperative multi-agent learning: the state of the art. Auton Agents Multi-Agent Syst 11:387–434Ringold PL, Alegria J, Czaplewski RL, Mulder BS, Tolle T, Burnett K (1996) Adaptive monitoring design for ecosystem management. Ecol Appl 6(3):745–747Routier J, Mathieu P, Secq Y (2001) Dynamic skill learning: a support to agent evolution. In: Proceedings of the artificial intelligence and the simulation of behaviour symposium on adaptive agents and multi-agent systems (AISB ’01), pp 25–32Scott RW (2002) Organizations: rational, natural, and open systems, 5th edn. Prentice Hall International, New YorkSeelam A (2009) Reorganization of massive multiagent systems: MOTL/O http://books.google.es/books?id=R-s8cgAACAAJ . Southern Illinois University CarbondaleSo Y, Durfee EH (1993) An organizational self-design model for organizational change. In: AAAI93 workshop on AI and theories of groups and oranizations, pp 8–15So Y, Durfee EH (1998) Designing organizations for computational agents. Simulating organizations. MIT Press, Cambridge, pp 47–64Schwaninger M (2000) A theory for optimal organization. Technical report. Institute of Management at the University of St. Gallen, SwitzerlandTantipathananandh C, Berger-Wolf TY (2011) Finding communities in dynamic social networks. In: IEEE 11th international conference on data mining 2011, pp 1236–1241Wang Z, Liang X (2006) A graph based simulation of reorganization in multi-agent systems. In: IEEE WICACM international conference on intelligent agent technology, pp 129–132Wang D, Tse Q, Zhou Y (2011) A decentralized search engine for dynamic web communities. Knowl Inf Syst 26(1):105–125Weick KE (1979) The social psychology of organizing, 2nd edn. Addison-Wesley, ReadingWeyns D, Haesevoets R, Helleboogh A, Holvoet T, Joosen W (2010a) The MACODO middleware for context-driven dynamic agent organizations. ACM Transact Auton Adapt Syst 3:1–3:28Weyns D, Malek S, Andersson J (2010b) FORMS: a formal reference model for self-adaptation. In: Proceedings of the 7th international conference on autonomic computing, pp 205–214Weyns D, Georgeff M (2010) Self-adaptation using multiagent systems. IEEE Softw 27(1):86–91Zhong C (2006) An investigation of reorganization algorithms. Master-thesi

    Sea ice meltwater and circumpolar deep water drive contrasting productivity in three Antarctic polynyas

    Get PDF
    In the Southern Ocean, polynyas exhibit enhanced rates of primary productivity and represent large seasonal sinks for atmospheric CO2. Three contrasting east Antarctic polynyas were visited in late December to early January 2017: the Dalton, Mertz, and Ninnis polynyas. In the Mertz and Ninnis polynyas, phytoplankton biomass (average of 322 and 354 mg chlorophyll a (Chl a)/m2, respectively) and net community production (5.3 and 4.6 mol C/m2, respectively) were approximately 3 times those measured in the Dalton polynya (average of 122 mg Chl a/m2 and 1.8 mol C/m2). Phytoplankton communities also differed between the polynyas. Diatoms were thriving in the Mertz and Ninnis polynyas but not in the Dalton polynya, where Phaeocystis antarctica dominated. These strong regional differences were explored using physiological, biological, and physical parameters. The most likely drivers of the observed higher productivity in the Mertz and Ninnis were the relatively shallow inflow of iron‐rich modified Circumpolar Deep Water onto the shelf as well as a very large sea ice meltwater contribution. The productivity contrast between the three polynyas could not be explained by (1) the input of glacial meltwater, (2) the presence of Ice Shelf Water, or (3) stratification of the mixed layer. Our results show that physical drivers regulate the productivity of polynyas, suggesting that the response of biological productivity and carbon export to future change will vary among polynyas

    Complete genome sequence of methicillin-sensitive Staphylococcus aureus containing a heterogeneic staphylococcal cassette chromosome element

    Get PDF
    Staphylococcus aureus is a common human bacterium that sometimes becomes pathogenic, causing serious infections. A key feature of S. aureus is its ability to acquire resistance to antibiotics. The presence of the staphylococcal cassette chromosome (SCC) element in serotypes of S. aureus has been confirmed using multiplex PCR assays. The SCC element is the only vector known to carry the mecA gene, which encodes methicillin resistance in S. aureus infections. Here, we report the genome sequence of a novel methicillin-sensitive S. aureus (MSSA) strain: SCC-like MSSA463. This strain was originally erroneously serotyped as methicillin-resistant S. aureus in a clinical laboratory using multiplex PCR methods. We sequenced the genome of SCC-like MSSA463 using pyrosequencing techniques and compared it with known genome sequences of other S. aureus isolates. An open reading frame (CZ049; AB037671) was identified downstream of attL and attR inverted repeat sequences. Our results suggest that a lateral gene transfer occurred between S. aureus and other organisms, partially changing S. aureus infectivity. We propose that attL and attR inverted repeats in S. aureus serve as frequent insertion sites for exogenous genes.http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&KeyUT=WOS:000316747000011&DestLinkType=FullRecord&DestApp=ALL_WOS&UsrCustomerID=8e1609b174ce4e31116a60747a720701BiologySCI(E)PubMed0ARTICLE3268-2745

    Utilising biological geotextiles: Introduction to the BORASSUS project and global perspectives

    Get PDF
    Field and laboratory studies indicate that utilisation of biological geotextiles constructed from palm-leaves and other selected organic materials are an effective, sustainable and economically viable soil conservation technique. The three-year plus (1 July 2005–28 February 2009) EU-funded BORASSUS Project (contract no. INCO-CT-2005-510745) evaluated the long-term effectiveness of biological geotextiles in controlling soil erosion and assessing their sustainability and economic viability. These studies progressed in ten countries, both in the ‘industrial north’ (in Europe) and in the ‘developing south’ (Africa, South America and South East Asia). The studied countries in the ‘developing south’ included Brazil, China, The Gambia, South Africa, Thailand and Vietnam. The ‘industrial north’ countries included Belgium, Hungary, Lithuania and the UK. The main findings of these studies are summarised in this paper and thematic information is presented in the other four papers in this Special Issue. Biological geotextiles offer potentially novel bioengineering solutions to environmental problems, including technologies for soil conservation, sustainable plant production and use of indigenous plants, improved ecosystem management by decreasing deforestation, improving agroforestry and cost-effective biogeotextile applications in diverse environments. Biogeotextiles may provide socio-economic platforms for sustainable development and the benefits for developing countries may include poverty alleviation, engagement of local people as stakeholders, employment for disadvantaged groups, small and medium enterprise (SME) development, earning hard currency, environmental education and local community involvement in land reclamation and environmental education programmes. These benefits are achieved through: (i) promotion of sustainable and environmentally friendly palm-agriculture to discourage deforestation, promoting both reforestation and agroforestry; (ii) construction of biogeotextiles enabling development of a rural labour-intensive industry, particularly encouraging employment of socially disadvantaged groups and (iii) export of biogeotextiles to industrialised countries could earn hard currency for developing economies, based on the principles of fair trade. Research and development activities of the BORASSUS Project have improved our knowledge on the effect of biogeotextile mats on the micro- and macro-soil environments and at larger scales through controlled laboratory and field experiments in diverse environments
    • 

    corecore