216 research outputs found

    Mg(2)Si(x)Sn(1-x)heterostructures on Si(111) substrate for optoelectronics and thermoelectronics

    Get PDF
    Thin (50-90 m) non-doped and doped (by Al atoms) Mg2Sn0.6Si0.4 and Mg(2)Sn(0.4)Si(0.6)films with roughness of 1.9-3.7 nm have been grown by multiple deposition and single annealing at 150 degrees C of multilayers formed by repetition deposition of three-layers (Si-Sn-Mg) on Si(111) p-type wafers with 45 cm resistivity. Transmission electron microscopy has shown that the first forming layer is an epitaxial layer of hex-Mg2Sn(300) on Si(111) substrate with thickness not more than 5-7 nm. Epitaxial relationships: hex-Mg2Sn(300)parallel to Si(111), hex-Mg2Sn[001]parallel to Si[-112] and hex-Mg2Sn[030]parallel to Si[110] have been found for the epitaxial layer. But inclusions of cub-Mg2Si were also observed inside hex-Mg2Sn layer. It was found that the remaining part of the film thickness is in amorphous state and has a layered distribution of major elements: Mg, Sn and Mg without exact chemical composition. It was established by optical spectroscopy data that both type films are semiconductor with undispersed region lower 0.18 eV with n(o) = 3.59 +/- 0.01, but only two direct interband transitions with energies 0.75-0.76 eV and 1.2 eV have been determined. The last interband transition has been confirmed by photoreflectance data at room temperature. Fourier transmittance spectroscopy and Raman spectroscopy data have established the formation of stannide, silicide and ternary compositions

    Resonant raman scattering in complexes of nc-Si/SiO<sub>2</sub> quantum dots and oligonucleotides

    No full text
    We report on the functionalization of nanocrystalline nc-Si/SiO2 semiconductor quantum dots (QDs) by short d(20G, 20T) oligonucleotides. The obtained complexes have been studied by Raman spectroscopy techniques with high spectral and spatial resolution. A new phenomenon of multiband resonant light scattering on single oligonucleotide molecules has been discovered, and peculiarities of this effect related to the nonradiative transfer of photoexcitation from nc-Si/SiO2 quantum dots to d(20G, 20T) oligonucleotide molecules have been revealed

    Electronic structure and optical properties of Ca2Si films grown on silicon different oriented substrates and calculated from first principles

    Get PDF
    The work considered the growth, optical properties and emerging interband transitions in Ca2Si films grown on silicon substrates with (111), (001), and (110) orientations at two temperatures (250 °C and 300 °C) using the sacrificial-template method. The optimum temperature for MBE single-phase growth of Ca2Si is 250 °C. Calculations of optical functions from the transmission and reflection spectra were carried out within the framework of a two-layer model and by the Kramers–Kronig method. It is shown that the main peaks in the experimental reflection spectra and the optical conductivity calculated according to Kramers–Kronig are in good agreement with each other. Comparison of ab initio calculations of the energy band structure and optical properties of a Ca2Si single crystal and two-dimensional Ca2Si layers with experimental data in the region of high-energy transitions showed good coincidence

    Ultrashort filaments of light in weakly-ionized, optically-transparent media

    Get PDF
    Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration, high energies beyond the Joule level and peak powers exceeding several terawatt (TW). When such pulses propagate through optically-transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium, and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid to the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. Differences between femtosecond pulses propagating in gaseous or condensed materials are underlined. Attention is also paid to the multifilamentation instability of broad, powerful beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy, and the possibility to guide electric discharges in air are finally addressed on the basis of experimental results.Comment: 50 pages, 38 figure

    Formation, structure, and optical properties of single-phase CaSi and CaSi2 films on Si substrates

    Get PDF
    In this paper, we report on optimizing the conditions for subsequently growing single-phase films of calcium monosilicide (CaSi) and calcium disilicide (CaSi2) on single-crystal silicon by reactive deposition epitaxy (RDE) and molecular beam epitaxy (MBE). The temperature range for the growth of CaSi films (400–500 °C) was determined, as well as the temperature range (600–680°C) for the growth of CaSi2 films on silicon with three orientations: (111), (100) and (110). The minimum temperatures for the epitaxial growth of CaSi films by the RDE method and CaSi2 films by the MBE method were determined, amounting to, respectively, T = 475 °C and T = 640 °C. An increase in the ratio of Ca to Si deposition rates to 26 made it possible to grow a large-block CaSi2 epitaxial film with the hR6 structure by the MBE method at T = 680 °C. Raman spectra and reflection spectra from single-phase epitaxial CaSi and CaSi2 films on silicon were recorded and identified for the first time. The correspondence between the experimental reflection spectra and the theoretically calculated reflection spectra in terms of amplitude and peak positions at photon energies of 0.1–6.5 eV has been established. Single-phase CaSi and CaSi2 films retain transparency in the photon energy range 0.4–1.2 eV

    Ca silicide films—promising materials for silicon optoelectronics

    Get PDF
    Single-phase films of semiconductor and semimetallic calcium silicides (Ca2Si, CaSi, and CaSi2), as well as films with a significant contribution of Ca5Si3 and Ca14Si19 silicides, were grown on single-crystal silicon and sapphire substrates. The analysis of the crystal structure of the grown films was carried out and the criterion of their matching with silicon and sapphire substrates was determined. Some lattice-matching models were proposed, and the subsequent deformations of the silicide lattices were estimated. Film’s optical functions, including the optical transparency, were calculated from the optical spectroscopy data and an extended comparison was performed with the results of ab initio calculations. The real limits of the optical transparency for the films on sapphire substrates were established. The maximum transparency limit (3.9 eV) was observed for the CaSi film. Based on an analysis of the photoelectric properties of Ca2Si/Si diodes on n- and p-type silicon substrates, a perspective of their applications in silicon optoelectronics was discussed

    Enhanced strange baryon production in Au+Au collisions compared to p+p at sqrts = 200 GeV

    Get PDF
    We report on the observed differences in production rates of strange and multi-strange baryons in Au+Au collisions at sqrts = 200 GeV compared to pp interactions at the same energy. The strange baryon yields in Au+Au collisions, then scaled down by the number of participating nucleons, are enhanced relative to those measured in pp reactions. The enhancement observed increases with the strangeness content of the baryon, and increases for all strange baryons with collision centrality. The enhancement is qualitatively similar to that observed at lower collision energy sqrts =17.3 GeV. The previous observations are for the bulk production, while at intermediate pT, 1 < pT< 4 GeV/c, the strange baryons even exceed binary scaling from pp yields.Comment: 7 pages, 4 figures. Printed in PR
    corecore