367 research outputs found

    The risk of menstrual abnormalities after tubal sterilization: a case control study

    Get PDF
    BACKGROUND: Tubal sterilization is the method of family planning most commonly used. The existence of the post-tubal-ligation syndrome of menstrual abnormalities has been the subject of debate for decades. METHODS: In a cross-sectional study, 112 women with the history of Pomeroy type of tubal ligation achieved by minilaparatomy as the case group and 288 women with no previous tubal ligation as the control group were assessed for menstrual abnormalities. RESULTS: Menstrual abnormalities were not significantly different between the case and control groups (p = 0.824). The abnormal uterine bleeding frequency differences in two different age groups (30–39 and 40–45 years old) were statistically significant (p = 0.0176). CONCLUSION: Tubal sterilization does not cause menstrual irregularities

    New mutations at the imprinted Gnas cluster show gene dosage effects of GsΞ± in postnatal growth and implicate XLΞ±s in bone and fat metabolism, but not in suckling

    Get PDF
    The imprinted Gnas cluster is involved in obesity, energy metabolism, feeding behavior, and viability. Relative contribution of paternally expressed proteins XLΞ±s, XLN1, and ALEX or a double dose of maternally expressed GsΞ± to phenotype has not been established. In this study, we have generated two new mutants (Ex1A-T-CON and Ex1A-T) at the Gnas cluster. Paternal inheritance of Ex1A-T-CON leads to loss of imprinting of GsΞ±, resulting in preweaning growth retardation followed by catch-up growth. Paternal inheritance of Ex1A-T leads to loss of imprinting of GsΞ± and loss of expression of XLΞ±s and XLN1. These mice have severe preweaning growth retardation and incomplete catch-up growth. They are fully viable probably because suckling is unimpaired, unlike mutants in which the expression of all the known paternally expressed Gnasxl proteins (XLΞ±s, XLN1 and ALEX) is compromised. We suggest that loss of ALEX is most likely responsible for the suckling defects previously observed. In adults, paternal inheritance of Ex1A-T results in an increased metabolic rate and reductions in fat mass, leptin, and bone mineral density attributable to loss of XLΞ±s. This is, to our knowledge, the first report describing a role for XLΞ±s in bone metabolism. We propose that XLΞ±s is involved in the regulation of bone and adipocyte metabolism

    Transcript- and tissue-specific imprinting of a tumour suppressor gene

    Get PDF
    The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis

    The Mw 5.1, 9 August 2020, Sparta Earthquake, North Carolina: The First Documented Seismic Surface Rupture in the Eastern United States

    Get PDF
    At 8:07 a.m. EDT on 9 Aug. 2020 a Mw 5.1 earthquake located ~3 km south of Sparta, North Carolina, USA, shook much of the eastern United States, producing the first documented surface rupture due to faulting east of the New Madrid seismic zone. The co-seismic surface rupture was identified along a 2-km-long traceable zone of predominantly reverse displacement, with folding and flexure generating a scarp averaging 8–10-cm-high with a maximum observed height of ~25 cm. Widespread deformation south of the main surface rupture includes cm-dm–long and mm-cm–wide fissures. Two trenches excavated across the surface rupture reveal that this earthquake propagated to the surface along a preexisting structure in the shallow bedrock, which had not been previously identified as an active fault. Surface ruptures by faulting are rarely reported for M <6 earthquakes, and hence the Sparta earthquake provides an opportunity to improve seismic hazard knowledge associated with these moderate events. Furthermore, this earthquake occurred in a very low strain rate intraplate setting, where earthquake surface deformation, regardless of magnitude, is sparse in time and rare to observe and characterize

    Normal X-inactivation mosaicism in corneas of heterozygous FlnaDilp2/+ female mice--a model of human Filamin A (FLNA) diseases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Some abnormalities of mouse corneal epithelial maintenance can be identified by the atypical mosaic patterns they produce in X-chromosome inactivation mosaics and chimeras. Human <it>FLNA</it>/+ females, heterozygous for X-linked, filamin A gene (<it>FLNA</it>) mutations, display a range of disorders and X-inactivation mosaicism is sometimes quantitatively unbalanced. <it>Flna</it><sup><it>Dilp2/+ </it></sup>mice, heterozygous for an X-linked filamin A (<it>Flna</it>) nonsense mutation have variable eye, skeletal and other abnormalities, but X-inactivation mosaicism has not been investigated. The aim of this study was to determine whether X-inactivation mosaicism in the corneal epithelia of <it>Flna</it><sup><it>Dilp2/+ </it></sup>mice was affected in any way that might predict abnormal corneal epithelial maintenance.</p> <p>Results</p> <p>X-chromosome inactivation mosaicism was studied in the corneal epithelium and a control tissue (liver) of <it>Flna</it><sup><it>Dilp2/+ </it></sup>and wild-type (WT) female X-inactivation mosaics, hemizygous for the X-linked, <it>LacZ </it>reporter H253 transgene, using Ξ²-galactosidase histochemical staining. The corneal epithelia of <it>Flna</it><sup><it>Dilp2/+ </it></sup>and WT X-inactivation mosaics showed similar radial, striped patterns, implying epithelial cell movement was not disrupted in <it>Flna</it><sup><it>Dilp2/+ </it></sup>corneas. Corrected stripe numbers declined with age overall (but not significantly for either genotype individually), consistent with previous reports suggesting an age-related reduction in stem cell function. Corrected stripe numbers were not reduced in <it>Flna</it><sup><it>Dilp2/+ </it></sup>compared with WT X-inactivation mosaics and mosaicism was not significantly more unbalanced in the corneal epithelia or livers of <it>Flna</it><sup><it>Dilp2/+ </it></sup>than wild-type <it>Flna<sup>+/+ </sup></it>X-inactivation mosaics.</p> <p>Conclusions</p> <p>Mosaic analysis identified no major effect of the mouse <it>Flna<sup>Dilp2 </sup></it>mutation on corneal epithelial maintenance or the balance of X-inactivation mosaicism in the corneal epithelium or liver.</p

    An Unexpected Function of the Prader-Willi Syndrome Imprinting Center in Maternal Imprinting in Mice

    Get PDF
    Genomic imprinting is a phenomenon that some genes are expressed differentially according to the parent of origin. Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are neurobehavioral disorders caused by deficiency of imprinted gene expression from paternal and maternal chromosome 15q11–q13, respectively. Imprinted genes at the PWS/AS domain are regulated through a bipartite imprinting center, the PWS-IC and AS-IC. The PWS-IC activates paternal-specific gene expression and is responsible for the paternal imprint, whereas the AS-IC functions in the maternal imprint by allele-specific repression of the PWS-IC to prevent the paternal imprinting program. Although mouse chromosome 7C has a conserved PWS/AS imprinted domain, the mouse equivalent of the human AS-IC element has not yet been identified. Here, we suggest another dimension that the PWS-IC also functions in maternal imprinting by negatively regulating the paternally expressed imprinted genes in mice, in contrast to its known function as a positive regulator for paternal-specific gene expression. Using a mouse model carrying a 4.8-kb deletion at the PWS-IC, we demonstrated that maternal transmission of the PWS-IC deletion resulted in a maternal imprinting defect with activation of the paternally expressed imprinted genes and decreased expression of the maternally expressed imprinted gene on the maternal chromosome, accompanied by alteration of the maternal epigenotype toward a paternal state spread over the PWS/AS domain. The functional significance of this acquired paternal pattern of gene expression was demonstrated by the ability to complement PWS phenotypes by maternal inheritance of the PWS-IC deletion, which is in stark contrast to paternal inheritance of the PWS-IC deletion that resulted in the PWS phenotypes. Importantly, low levels of expression of the paternally expressed imprinted genes are sufficient to rescue postnatal lethality and growth retardation in two PWS mouse models. These findings open the opportunity for a novel approach to the treatment of PWS

    Postnatal Survival of Mice with Maternal Duplication of Distal Chromosome 7 Induced by a Igf2/H19 Imprinting Control Region Lacking Insulator Function

    Get PDF
    The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)β€”a chromatin insulator, we introduced a mutant ICR (ICRΞ”) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome

    Cre-Dependent Expression of Multiple Transgenes in Isolated Neurons of the Adult Forebrain

    Get PDF
    Background: Transgenic mice with mosaic, Golgi-staining-like expression of enhanced green fluorescent protein (EGFP) have been very useful in studying the dynamics of neuronal structure and function. In order to further investigate the molecular events regulating structural plasticity, it would be useful to express multiple proteins in the same sparse neurons, allowing co-expression of functional proteins or co-labeling of subcellular compartments with other fluorescent proteins. However, it has been difficult to obtain reproducible expression in the same subset of neurons for direct comparison of neurons expressing different functional proteins. Principal Findings: Here we describe a Cre-transgenic line that allows reproducible expression of transgenic proteins of choice in a small number of neurons of the adult cortex, hippocampus, striatum, olfactory bulb, subiculum, hypothalamus, superior colliculus and amygdala. We show that using these Cre-transgenic mice, multiple Cre-dependent transgenes can be expressed together in the same isolated neurons. We also describe a Cre-dependent transgenic line expressing a membrane associated EGFP (EGFP-F). Crossed with the Cre-transgenic line, EGFP-F expression starts in the adolescent forebrain, is present in dendrites, dendritic protrusions, axons and boutons and is strong enough for acute or chronic in vivo imaging. Significance: This triple transgenic approach will aid the morphological and functional characterization of neurons in various Cre-dependent transgenic mice
    • …
    corecore