878 research outputs found

    The California Supreme Court’s Unlawful Use of Legislative History to Interpret Unambiguous Statutes during Its 2005 Term

    Get PDF
    A large part of the California Supreme Court’s job is to interpret the statutes that the California Legislature has enacted. The Court has developed clear rules for this task. One of the rules is that courts may rely on legislative history if and only if the statute being interpreted is ambiguous. However, as a review of the Court’s recent Term from September 2005 to August 2006 reveals, the Court consistently violates this important rule. This article considers four cases in which the Court used legislative history to “confirm” the meaning of an unambiguous statute, and one case in which the Court used legislative history to change an unambiguous statute’s meaning. It concludes with suggestions for improving the Court’s performance

    Dutch dwellings

    Get PDF
    Applying Generative Design (GD) for dwelling is not very common but it opens up the possibility to study whether GD systems can reproduce existing design typologies. Dutch dwellings as an exemplification of a design typology are analysed using the SAR methodology. Building regulations are used as input to a GD system along with the typical requirements for a family house. The results show that not all existing typologies can exactly be reproduced, but the generated designs have a remarkable resemblance with Dutch dwellings. They also demonstrate that Dutch dwelling identity is at least partially encoded in Dutch building regulations. Coding of yet unknown architectural identities requires new GD metaphors to support the architect

    Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion

    Get PDF
    Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180  MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4  pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.United States. National Institutes of Health (R01-CA142575)United States. National Institutes of Health (R01-CA097305)United States. National Institutes of Health (R01-CA187595)United States. National Institutes of Health (R00-EB011889

    Laser speckle imaging in the spatial frequency domain

    Get PDF
    Laser Speckle Imaging (LSI) images interference patterns produced by coherent addition of scattered laser light to map subsurface tissue perfusion. However, the effect of longer path length photons is typically unknown and poses a limitation towards absolute quantification. In this work, LSI is integrated with spatial frequency domain imaging (SFDI) to suppress multiple scattering and absorption effects. First, depth sensitive speckle contrast is shown in phantoms by separating a deep source (4 mm) from a shallow source (2 mm) of speckle contrast by using a high spatial frequency of illumination (0.24 mm−1). We develop an SFD adapted correlation diffusion model and show that with high frequency (0.24 mm−1) illumination, doubling of absorption contrast results in only a 1% change in speckle contrast versus 25% change using a planar unmodulated (0 mm−1) illumination. Similar absorption change is mimicked in vivo imaging a finger occlusion and the relative speckle contrast change from baseline is 10% at 0.26 mm−1 versus 60% at 0 mm−1 during a finger occlusion. These results underscore the importance of path length and optical properties in determining speckle contrast. They provide an integrated approach for simultaneous mapping of blood flow (speckle contrast) and oxygenation (optical properties) which can be used to inform tissue metabolism

    Endometrial stromal cells of women with recurrent miscarriage fail to discriminate between high- and low-quality human embryos

    Get PDF
    Background The aetiology of recurrent miscarriage (RM) remains largely unexplained. Women with RM have a shorter time to pregnancy interval than normally fertile women, which may be due to more frequent implantation of non-viable embryos. We hypothesized that human endometrial stromal cells (H-EnSCs) of women with RM discriminate less effectively between high-and low-quality human embryos and migrate more readily towards trophoblast spheroids than H-EnSCs of normally fertile women. Methodology/Principal Findings Monolayers of decidualized H-EnSCs were generated from endometrial biopsies of 6 women with RM and 6 fertile controls. Cell-free migration zones were created and the effect of the presence of a high-quality (day 5 blastocyst, n = 13), a low-quality (day 5 blastocyst with three pronuclei or underdeveloped embryo, n = 12) or AC-1M88 trophoblast cell line spheroid on H-ESC migratory activity was analyzed after 18 hours. In the absence of a spheroid or embryo, migration of H-EnSCs from fertile or RM women was similar. In the presence of a low-quality embryo in the zone, the migration of H-EnSCs of control women was inhibited compared to the basal migration in the absence of an embryo (P<0.05) and compared to the migration in the presence of high-quality embryo (p<0.01). Interestingly, the migratory response H-EnSCs of women with RM did not differ between high- and low-quality embryos. Furthermore, in the presence of a spheroid their migration was enhanced compared to the H-EnSCs of controls (p<0.001). Conclusions H-EnSCs of fertile women discriminate between high- and low-quality embryos whereas H-EnSCs of women with RM fail to do so. H-EnSCs of RM women have a higher migratory response to trophoblast spheroids. Future studies will focus on the mechanisms by which low-quality embryos inhibit the migration of H-EnSCs and how this is deregulated in women with RM

    Buffering Social Influence: Neural Correlates of Response Inhibition Predict Driving Safety in the Presence of a Peer

    Get PDF
    Adolescence is a period characterized by increased sensitivity to social cues, as well as increased risk-taking in the presence of peers. For example, automobile crashes are the leading cause of death for adolescents, and driving with peers increases the risk of a fatal crash. Growing evidence points to an interaction between neural systems implicated in cognitive control and social and emotional context in predicting adolescent risk. We tested such a relationship in recently licensed teen drivers. Participants completed an fMRI session in which neural activity was measured during a response inhibition task, followed by a separate driving simulator session 1 week later. Participants drove alone and with a peer who was randomly assigned to express risk-promoting or risk-averse social norms. The experimentally manipulated social context during the simulated drive moderated the relationship between individual differences in neural activity in the hypothesized cognitive control network (right inferior frontal gyrus, BG) and risk-taking in the driving context a week later. Increased activity in the response inhibition network was not associated with risk-taking in the presence of a risky peer but was significantly predictive of safer driving in the presence of a cautious peer, above and beyond self-reported susceptibility to peer pressure. Individual differences in recruitment of the response inhibition network may allow those with stronger inhibitory control to override risky tendencies when in the presence of cautious peers. This relationship between social context and individual differences in brain function expands our understanding of neural systems involved in top–down cognitive control during adolescent development

    Neural Responses to Exclusion Predict Susceptibility to Social Influence

    Get PDF
    Purpose Social influence is prominent across the lifespan, but sensitivity to influence is especially high during adolescence and is often associated with increased risk taking. Such risk taking can have dire consequences. For example, in American adolescents, traffic-related crashes are leading causes of nonfatal injury and death. Neural measures may be especially useful in understanding the basic mechanisms of adolescents\u27 vulnerability to peer influence. Methods We examined neural responses to social exclusion as potential predictors of risk taking in the presence of peers in recently licensed adolescent drivers. Risk taking was assessed in a driving simulator session occurring approximately 1 week after the neuroimaging session. Results Increased activity in neural systems associated with the distress of social exclusion and mentalizing during an exclusion episode predicted increased risk taking in the presence of a peer (controlling for solo risk behavior) during a driving simulator session outside the neuroimaging laboratory 1 week later. These neural measures predicted risky driving behavior above and beyond self-reports of susceptibility to peer pressure and distress during exclusion. Conclusions These results address the neural bases of social influence and risk taking; contribute to our understanding of social and emotional function in the adolescent brain; and link neural activity in specific, hypothesized, regions to risk-relevant outcomes beyond the neuroimaging laboratory. Results of this investigation are discussed in terms of the mechanisms underlying risk taking in adolescents and the public health implications for adolescent driving

    Age-related changes in global motion coherence: conflicting haemodynamic and perceptual responses

    Get PDF
    Our aim was to use both behavioural and neuroimaging data to identify indicators of perceptual decline in motion processing. We employed a global motion coherence task and functional Near Infrared Spectroscopy (fNIRS). Healthy adults (n = 72, 18-85) were recruited into the following groups: young (n = 28, mean age = 28), middle-aged (n = 22, mean age = 50), and older adults (n = 23, mean age = 70). Participants were assessed on their motion coherence thresholds at 3 different speeds using a psychophysical design. As expected, we report age group differences in motion processing as demonstrated by higher motion coherence thresholds in older adults. Crucially, we add correlational data showing that global motion perception declines linearly as a function of age. The associated fNIRS recordings provide a clear physiological correlate of global motion perception. The crux of this study lies in the robust linear correlation between age and haemodynamic response for both measures of oxygenation. We hypothesise that there is an increase in neural recruitment, necessitating an increase in metabolic need and blood flow, which presents as a higher oxygenated haemoglobin response. We report age-related changes in motion perception with poorer behavioural performance (high motion coherence thresholds) associated with an increased haemodynamic response

    Sharing brain mapping statistical results with the neuroimaging data model

    Get PDF
    Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment. NIDM-Results provides a unified representation of mass univariate analyses including a level of detail consistent with available best practices. This standardized representation allows authors to relay methods and results in a platform-independent regularized format that is not tied to a particular neuroimaging software package. Tools are available to export NIDM-Result graphs and associated files from the widely used SPM and FSL software packages, and the NeuroVault repository can import NIDM-Results archives. The specification is publically available at: http://nidm.nidash.org/specs/nidm-results.html
    • 

    corecore