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Neural Responses to Exclusion Predict Susceptibility to Social Influence

Abstract
Purpose

Social influence is prominent across the lifespan, but sensitivity to influence is especially high during
adolescence and is often associated with increased risk taking. Such risk taking can have dire consequences.
For example, in American adolescents, traffic-related crashes are leading causes of nonfatal injury and death.
Neural measures may be especially useful in understanding the basic mechanisms of adolescents' vulnerability
to peer influence.

Methods

We examined neural responses to social exclusion as potential predictors of risk taking in the presence of peers
in recently licensed adolescent drivers. Risk taking was assessed in a driving simulator session occurring
approximately 1 week after the neuroimaging session.

Results

Increased activity in neural systems associated with the distress of social exclusion and mentalizing during an
exclusion episode predicted increased risk taking in the presence of a peer (controlling for solo risk behavior)
during a driving simulator session outside the neuroimaging laboratory 1 week later. These neural measures
predicted risky driving behavior above and beyond self-reports of susceptibility to peer pressure and distress
during exclusion.

Conclusions

These results address the neural bases of social influence and risk taking; contribute to our understanding of
social and emotional function in the adolescent brain; and link neural activity in specific, hypothesized,
regions to risk-relevant outcomes beyond the neuroimaging laboratory. Results of this investigation are
discussed in terms of the mechanisms underlying risk taking in adolescents and the public health implications
for adolescent driving.
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A B S T R A C T

Purpose: Social influence is prominent across the lifespan, but sensitivity to influence is especially
high during adolescence and is often associated with increased risk taking. Such risk taking can
have dire consequences. For example, in American adolescents, traffic-related crashes are leading
causes of nonfatal injury and death. Neural measures may be especially useful in understanding
the basic mechanisms of adolescents’ vulnerability to peer influence.
Methods: We examined neural responses to social exclusion as potential predictors of risk taking
in the presence of peers in recently licensed adolescent drivers. Risk taking was assessed in a
driving simulator session occurring approximately 1 week after the neuroimaging session.
Results: Increased activity in neural systems associated with the distress of social exclusion and
mentalizing during an exclusion episode predicted increased risk taking in the presence of a peer
(controlling for solo risk behavior) during a driving simulator session outside the neuroimaging
laboratory 1 week later. These neural measures predicted risky driving behavior above and beyond
self-reports of susceptibility to peer pressure and distress during exclusion.
Conclusions: These results address the neural bases of social influence and risk taking; contribute
to our understanding of social and emotional function in the adolescent brain; and link neural
activity in specific, hypothesized, regions to risk-relevant outcomes beyond the neuroimaging
laboratory. Results of this investigation are discussed in terms of the mechanisms underlying risk
taking in adolescents and the public health implications for adolescent driving.
� 2014 Society for Adolescent Health and Medicine.

IMPLICATIONS AND
CONTRIBUTION

Adolescents who show the
greatest neural reactivity
to exclusion may be most
susceptible to risk taking
in the presence of peers.
Neural responses provided
information that was not
evident from self-reports
of susceptibility to peer
pressure or participants’
distress during exclusion,
lending new insight into
the mechanisms of peer
influence and risk.

Adolescence is a period characterized by heightened
responsivity to social influence across domains [1e4], including
increased risk taking in the presence of peers [5e7]. This can
have dire consequences. For example, in U.S. adolescents, traffic-
related crashes are the leading causes of nonfatal injury and
death [8]. Evidence is strong that adolescents drive in a more
risky fashion compared with adults [9]. Furthermore, adoles-
cents drive in a more risky fashion in the presence of passengers
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[10], with fatal crash rates being higher among adolescent
drivers carrying young passengers [11,12].

Neural measures may be especially useful in understanding
the basic mechanisms of adolescents’ vulnerability to peer in-
fluence and risk taking. For example, well-established theories
suggest that the imbalance between relatively more rapid
development of affective processing systems than cognitive
control systems leaves adolescents more vulnerable to risk tak-
ing than those in other developmental groups [5,6]. However,
adolescents are not uniformly susceptible to risk [7,13e15];
recent empirical work and reviews highlight the likely impor-
tance of social context and motivational salience [7,14,16,17],
among other factors [13], in affecting adolescent responses to
social-cognitive and social-affective cues, as well as in resulting
risk-taking behavior. However, current understanding of the
neural mechanisms of peer influence on risk taking and knowl-
edge of how neural responses to social cues might interact with
context and motivation in adolescents are extremely limited (c.f.,
[18]).

One form of sensitivity to social cues is the cognitive ability to
consider and make sense of the contents of other people’s minds
(termed mentalizing). Primary brain regions associated with
mentalizing include the dorsomedial prefrontal cortex (DMPFC)
[19], right temporal parietal junction (rTPJ) [20,21], and posterior
cingulate cortex (PCC) [22,23]. Individual differences in the
sensitivity of this system may also be associated with broader
susceptibility to social influence.

A second form of sensitivity to social cues includes affective
responses to being accepted or rejected by others [7]. Prior
research has demonstrated that heightened reward activity in
the presence of peers is associatedwith risk taking in adolescents
[24]. Conversely, sensitivity to “social pain” [25] has not been
examined as a predictor of susceptibility to risky influence and is
the focus of the present investigation. Social pain is associated
with increased neural activity in the anterior insula (AI) and
subgenual anterior cingulate cortex (subACC) in adolescents [26],
as well as in the dorsal anterior cingulate cortex (dACC) in adults
[25,27,28]. Activity within this system is thought to signal that
onemay not be in linewith the group, among other things, and is
associated with restoring normative behavior [29,30]. The social
pain system may serve to promote learning that keeps in-
dividuals in harmony with the group [26,31].

Hypotheses

Consistent with theories that focus on socialmonitoring during
exclusion as a means of remaining or being included as part of the
group [32e34], to the extent that individuals are more sensitive to
social cues and experience greater physiological reactivity to
exclusion, theymight bemore inclined to behave inways that pre-
emptively avoid exclusion and promote bonding during social in-
teractions [35]. Given that risk taking in adolescence can be a
means of gaining social acceptance [36], those who are more
responsive to acute social threatsmight pre-emptively adjust their
behavior to fit in with group norms across situations. More spe-
cifically, we hypothesized that increased activity in neural systems
associated with social-cognitive sensitivity (mentalizing: DMPFC
[19], rTPJ [20,21], and PCC [22,23]) as well as social-affective
sensitivity (“social pain”: AI, subACC [26]) during exclusion would
beassociatedwithdifferences inrisk taking in thepresenceofpeers
in a separate simulated driving session, controlling for solo risk-

taking behavior. It is also possible that the dACC might play a
role, given prior findings regarding social pain in adults [25,27,28].

To test these hypotheses, we conducted a two-appointment
study in which neural responses were recorded using func-
tional magnetic resonance imaging (fMRI) during social exclu-
sion in an especially at-risk group for fatal crash: recently
licensed male adolescents [11,37]. Individual differences in
neural sensitivity to exclusion during the initial fMRI scan were
then used to predict individual differences in risk taking in the
presence of peers, controlling for solo risk behavior, in a separate
driving simulator session approximately 1 week later (Figure 1).
Driving simulation is consistently associated with a number of
real-world driving behaviors [38] and is a safe method for
investigating the effect of peer influences on risky driving
behavior while maintaining a high degree of both experimental
control and external validity [39].

Materials and Methods

Participants

Thirty-six neurotypical adolescent males aged 16e17 years
(M ¼ 16.8, SD ¼ .47) were recruited through the Michigan state
driver registry database (driver history record) as part of a larger
study on peer influences on adolescent driving [40]. These par-
ticipants successfully completed both an fMRI session and a
separate driving simulator appointment approximately 1 week
later (Figure 1; see Supplementary Data for full recruitment and
simulator details). Within the 4e9 months prior to the scan, all
participants had obtained a Level 2 (intermediate) Michigan
driver license allowing them to drive independently but with
passenger and night driving restrictions. In addition, participants
met standard MRI safety criteria (Supplementary Data). Legal
guardians provided written informed consent, and adolescents
provided written assent.

Procedure

Session 1: fMRI. At their first (fMRI) session, participants were
introduced to two gender-matched peer confederates. Partici-
pants were told that they would be playing some computer
games on their own, as well as in a group with the other “par-
ticipants.” Research assistants then took them to separate pri-
vate rooms where the real participant completed the online
prescan questionnaires and was given further instructions
about the fMRI tasks; the confederates were not involved
further in study procedures. Participants next completed a se-
ries of tasks within the fMRI scanner, including a game called
Cyberball. Cyberball has been validated in a number of behav-
ioral and neuroimaging studies as a reliable way of simulating
the experience of social exclusion [27,41]. A fair game of
Cyberball was always played first, in which the participant and
two virtual players received the ball equally often. This was
followed by an unfair game, inwhich the participant and virtual
players started out receiving the ball equally often, but where
the participant was left out after a few throws, simulating
exclusion. Order of the rounds was held constant to preserve
the psychological experience across participants (see
Supplementary Data). After the scan, participants completed a
second set of questionnaires, including all the questionnaires
that are the focus of this investigation.
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Self-reports. Participants completed online self-report assess-
ments of Susceptibility to Peer Pressure (SPP) [42,43], resistance
to peer influence (RPI) [44], and distress during the exclusion
episode (the need threat scale [NTS]) [45] using Qualtrics. Higher
SPP scores indicate increased SPP. Higher RPI scores indicate
greater ability to resist peer influence. Higher NTS scores indicate
greater need satisfaction, and lower scores indicate greater
threat or distress.

Session 2: driving simulation. Approximately 1 week after the
fMRI session, participants completed a driving simulator ap-
pointment. Within this session, participants drove a practice
drive to habituate to a state-of-the-art fixed-base driving simu-
lator (Figure 2; Supplementary Data). All participants then drove
alone and in the presence of a young, male confederate, whose
behavior was manipulated to portray one of the two risk levels
(risk accepting or not risk accepting) as part of a larger study on
susceptibility to normative pressures in the driving context [40].1

Participants were randomly assigned to conditions blindly by
an investigator who was not involved in any of the fMRI or simu-
lator testing within a 2 � 2 � 2 counterbalanced block design
composed of conditions: confederate passenger behavior (high

riskvs. lowrisk)�driveorder (drovealoneorwith theconfederate
passenger first) � order of scenarios presented within each drive
(order A or order B). The solo and passenger drives each consisted
of the same number of intersections and yellow light scenarios.

Data acquisition and analysis

fMRI data. Imaging data were acquired using a 3-T GE Signa MRI
scanner (GE Healthcare, Fairfield, CT). One functional run was
recorded for each participant (251 volumes) during the Cyberball
tasks. Functional data were prepared using a standard pre-
processing stream and analyzed using statistical parametric
mapping (SPM8) [46]. Data were modeled using the general
linear model as implemented in SPM8. Three trial phases were
modeled: social inclusion, social exclusion, and visual tracking.
Additional details on scanning parameters, processing, and
modeling are available in the Supplementary Data.

Regions of interest. Regions of interest (ROIs) were constructed
for each of the two a priori hypothesized networks of interest
(social pain, Figure 3A; mentalizing, Figure 5A; ROI definitions
in Supplementary Data). The social pain network was defined
based on prior work examining exclusion in adolescents [26] to
include bilateral AI and subACC (Figure 3A). An additional,
exploratory, network was constructed to also include the dACC,
given prior findings regarding social pain in adults [25,27,28].
The mentalizing network was defined to include DMPFC, rTPJ,
and PCC (Figure 5A) [19e23]. Separate ROIs for subregions

Figure 2. Driving simulator. During the driving session, participants drove in a fixed-base, partial cab driving simulator.

Figure 1. Overview of study protocol. First, participants completed an fMRI scanning session in which neural activity was recorded during an exclusion episode. Next,
approximately 1 week later, driving behavior was recorded in a driving simulator, while participants drove alone and in the presence of a peer (confederate).

1 This manipulation and associated effects from the larger study are described
in more extensive detail elsewhere [40] and are not the focus of the current
investigation. However, confederate behavior is accounted for in all of our
models.

E.B. Falk et al. / Journal of Adolescent Health 54 (2014) S22eS31S24



within each network were also constructed to facilitate sec-
ondary follow-up analyses, parsing which regions within the
network drive the effects observed. Finally, we identified re-
gions within the broader anatomically defined ROIs that were
associated with the main effect of exclusion > inclusion during
Cyberball (Figures 4A and 6A; Supplementary Table S5), treated
as functionally defined regions of interest (fROIs). The anatom-
ical ROI estimates reflect individual differences in neural activity
within a priori hypothesized regions. Supplemental analyses
focusing on the fROIs (1) confirm that the task is engaging the
regions expected and (2) provide a way of testing whether the
subregions that are engaged during exclusion most (on average)
predict changes in our dependent measures of risk taking.

Analysis plan

Neural data and driving simulator datawere combined using a
brain-as-predictor framework [47] in a series of ordinary least
squares regressions, implemented in R version 2.15.1. Predictors

of interest were estimates of exclusion-related neural activity in
the social pain network and the mentalizing network. Parameter
estimates fromthe anatomical and functional ROIswereextracted
for each subject using MarsBar from the exclusion > inclusion
contrast. Estimates from the functional ROIs were extracted at
the cluster level. All extracted parameter estimates were trans-
formed into units of percent signal change by dividing by the
grand mean value from the whole run of Cyberball [48,49] and
then used as predictors of risky behavior in subsequent models.

Our primary dependent measure of risk taking was the pro-
portion of time during each drive that participants were in the
intersection when the traffic signals were red (percent red). The
simulation was designed to present dilemma zone (yellow light)
situations that would elicit risk-taking behaviors, that is, will-
ingness to run the light. Time spent in the intersection while the
light is red is indicative of the driver’s willingness to push
through lights in a dilemma situation, a measure that is trans-
latable to real-world driving where intersection crashes can be
among the most serious [40].

Figure 3. (A) Anatomical ROIs comprising the putative social pain system. Primary results averaged activity in AI and subACC. Additional results also computed
including the dACC. (B) Scatter plot of residualized percent signal change for exclusion > inclusion extracted from the combined ROIs during Cyberball predicting risk
taking during the passenger drive, controlling for drive order, passenger type, and solo drive behavior.

Figure 4. (A) fROIs were identified within the anatomical ROIs shown in Figure 3, during exclusion compared with inclusion (thresholded at p < .005, k ¼ 10). (B)
Scatter plot of residualized percent signal change for exclusion > inclusion during Cyberball within the identified clusters, predicting risk taking during the passenger
drive, controlling for drive order, passenger type, and solo drive behavior.

E.B. Falk et al. / Journal of Adolescent Health 54 (2014) S22eS31 S25



We operationalized susceptibility to social influence in
terms of risk-taking behaviors during the passenger drive,
controlling for baseline (solo) risk-taking behavior. We ran
separate, successive regression models to examine the re-
lationships between neural activity in our a priori hypothesized
mentalizing and social pain networks, respectively, and risk
taking during the passenger drive. Parallel models were then
run examining self-reports of distress during exclusion and SPP
as predictors, respectively. Finally, neural data and self-report
data were entered in a series of combined models that exam-
ined the effects of each neural network, separately, above and
beyond self-report predictors. To control for potential learning
effects of repeated exposure to the driving simulator, as well as
confederate behavior, all models also included solo drive risk-
taking behavior, confederate condition (risk accepting vs. not
risk accepting), and drive order (participant first vs. confederate
first) as covariates.

Results

Behavioral results

Self-reports. At baseline, participants reported being somewhat
unsusceptible to peer influence (SPP:M ¼ 1.95, corresponding to
an average response indicating that they would “probably not”
go along with their friend’s risky behavior, SD ¼ .49, Cronbach’s
a ¼ .78) and somewhat more similar to the person who resists
peer influence than to someone who is susceptible to peer in-
fluence (RPI: M ¼ 2.93, SD ¼ .46, Cronbach’s a ¼ .53). Given that
RPI did not exhibit strong reliability and the results of our pri-
mary target analyses are similar for both SPP and RPI, we report
results throughout the rest of the article focusing on SPP.
Consistent with past work examining the effects of Cyberball in
adolescents [26], participants reported relatively neutral levels of
threat following exclusion (NTS overall score: M ¼ 3.89,

Figure 5. (A) Anatomical ROIs comprising the mentalizing system. Primary results averaged activity in DMPFC, rTPJ, and PCC. (B) Scatter plot of residualized percent
signal change for exclusion > inclusion extracted from the combined ROIs during Cyberball predicting risk taking during the passenger drive, controlling for drive order,
passenger type, and solo drive behavior.

Figure 6. (A) fROIs were identified within the anatomical ROIs shown in Figure 5, during exclusion compared with inclusion (thresholded at p < .005, k ¼ 10). (B)
Scatter plot of residualized percent signal change for exclusion > inclusion during Cyberball within the identified clusters, predicting risk taking during the passenger
drive, controlling for drive order, passenger type, and solo drive behavior.
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corresponding to an average response between “neither agree
nor disagree” and “somewhat disagree”, with respect to items
measuring felt threat, SD ¼ .97, Cronbach’s a ¼ .92).

Risky behavior during the drives. Risk taking during solo and
passenger driving was highly correlated with one another (r ¼
.78, p < .001). Consistent with prior findings [24], however, we
observed a main effect of passenger presence, such that on
average, participants drove in a riskier manner during the pas-
senger drive (percent red:M¼ .21, SD ¼ .17) than during the solo
drive (percent red: M ¼ .13, SD ¼ .14, t(36) ¼ 4.33, p < .001;
higher percentages of time in the intersection when the light is
red indicate increased risk taking). We also observed an effect of
confederate passenger type, such that participants exposed to
the risk-accepting confederate passenger took more risks on
average than those exposed to the risk-averse confederate pas-
senger (t(34) ¼ �2.15, p ¼ .04), although participants took more
risks with both types of passengers compared with driving alone
(t(35) ¼ 4.29, p < .001). Confederate type did not interact with
our neural predictors to predict risk taking or susceptibility to
influence in any of the models that form the primary focus of this
article (ps range from .15 to .82).

Self-report predictors of risky influence. Self-reports of SPP were
significantly positively associated with increased risk-taking
behavior during the passenger drive (b ¼ .23, t(32) ¼ 2.12, p ¼
.042), controlling for solo risk-taking behavior, confederate
condition, and drive order. Self-reports of distress during exclu-
sion were uncorrelated with risk-taking behavior during the
passenger drive (b ¼ .05, t(32) ¼ .48, p ¼ .638).

Neural results

Neural activity in the social pain network previously observed
inadolescents for theexclusion> inclusioncontrast (AIþ subACC)
was significantly positively associated with risky behavior in the
driving simulator (Table 1A, Figure3B); thosewhoshowedgreater
activity in the social pain network during exclusion > inclusion
drove in a riskier manner in the presence of a peer, controlling for
solo drive behavior. Parallel results were observed treating the
change score from solo to passenger drive as the dependent
measure. In addition,measures of neural activity in the social pain
network remained significantly positively associated with risk
taking during the passenger drive, controlling for SPP (Table 1B)
and distress during the exclusion episode (Table 1C). Parallel re-
sults were observed in our fROIs (Tables 1De1F) and in the
extended social pain network that included AI, subACC, and dACC
[25,27,28]. However, the results were strongest in the AI and
subACC regions that were also most strongly associated with the
main effect of the task (Supplementary Table S1; see also, sup-
plemental whole brain search for regions associated with risk
taking in passenger, compared with solo drives, Supplementary
Table S6).

We next examined activity in thementalizing network during
exclusion versus inclusion as a predictor of later susceptibility to
risky influence in the driving simulator (Table 2A). Consistent
with the idea that broader sensitivity to social cues is associated
with susceptibility to influence, neural activity in thementalizing
network (DMPFC þ rTPJ þ PCC; Figure 5A) was associated with
risk taking during the passenger drive (Table 2A; Figure 5B).
Parallel results were observed treating the change score from
solo to passenger drive as the dependent measure. In addition,

neural activity in thementalizing network remained significantly
positively associated with risk taking during the passenger drive,
controlling for SPP and distress during the exclusion episode
(Tables 2B and 2C; see Supplementary Table S2 for subregion
analyses), and using fROIs (Tables 2De2F).

Discussion

We examined neural and self-report predictors of suscepti-
bility to risky social influence in a sample of recently licensed
adolescent drivers. Consistent with past work [24], the mere
presence of a peer was enough to promote risk, whether or not
explicit risky norms were communicated (although the effect
was strongest with passengers who promote risk-accepting
norms [40]). Furthermore, increased activity in both social-
cognitive (mentalizing) and social-affective (social pain) sys-
tems during exclusion predicted increased risky behavior in the
presence of a peer (confederate), controlling for solo risk-taking
behavior and the confederate’s behavior. The brain undergoes
development of both affective and social-cognitive systems
across adolescence [5,15,16,50e53], and adolescence is thought
to be a period of reorienting “social and motivational tendencies,
which in turn influence behavior and emotion in adolescence
depending upon interactions with social context” [54]. Our data
suggest that individual differences in the responsiveness of these
systems may relate to adolescent behavior in the presence of
peers, controlling for their solo risk behavior.

Social psychologists have suggested that one function of hu-
man susceptibility to social influence is to promote bonding and
group harmony [55], and humans have developed strong bio-
logical alarm systems to prevent social isolation [25,27,56e60].
Indeed, social monitoring during exclusion may serve as a means
of remaining connected with the group [32e34]. More generally,
these results may be interpreted within the framework of re-
wards and punishments that are known to drive human and
animal behavior and learning [56,61e65]. Both real and antici-
pated rewards reinforce behaviors, whereas real and anticipated
punishments inhibit behaviors that are known to produce pun-
ishment [66e70], with variation in individual differences
regarding sensitivity to rewards and punishments in motivating
behavior [61e63]. Our data suggest that such differences may
also translate into susceptibility to behavior change in the pres-
ence of peers and indicate specific neural processes that may
underlie such effects; adolescents whose brains are more
responsive to social cues during exclusion may be more likely to
change their behavior in the presence of peers (perhaps to avoid
social exclusion or promote affiliation), regardless of whether
peers explicitly encourage risk or not.

Neural activity explains variance in risky behavior that is not
explained by self-reports

Activity in both the social pain and mentalizing networks
remained significant predictors of risky driving in the pres-
ence of a peer, not only when controlling for individual dif-
ferences in solo risk behavior and confederate behavior but
also when controlling for self-reports of SPP [42] and distress
during Cyberball. Although self-reported SPP predicted risk
taking in the presence of a passenger during the driving
simulator session, when neural activity and self-report were
simultaneously modeled, the neural activity predicted variance
in the behavioral outcome, above and beyond self-report. This
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Table 1
Relationship between neural activity in the social pain network during Cyberball exclusion > inclusion and risk taking (percent red) in the presence of peers in
the driving simulator session
1A: Effect of neural activity in the social pain network (AI and subACC), controlling for passenger type, drive order, and solo risk-taking behavior (as measured by per-
formance in the solo drive at the simulator); 1B: Study of the same relationships as in Table 1A but controls for self-reported SPP; 1C: Study of the same relationships as in
Table 1A but controls for distress during the exclusion episode (Cyberball), as measured by the NTS; 1D: Study of the same relationships as in Table 1A but replaces the
anatomical ROIwith an fROI definedbasedon exclusion> inclusionwithinhypothesized anatomical regions; 1E: Studyof the same relationships as inTable 1Dbut controls
for self-reported SPP; 1F: Study of the same relationships as in Table 1D but controls for distress during the exclusion episode (Cyberball), as measured by the NTS.

Table 1A

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .028 .035 .085 .796 .432
Passenger type .091 .036 .276 2.546 .016
Solo drive .779 .128 .671 6.07 <.001
Cyber (AI and subACC) .119 .038 .314 3.102 .004

N ¼ 36 Model R square ¼ .718

Table 1B

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .044 .036 .135 1.225 .23
Passenger type .081 .036 .246 2.269 .031
Solo drive .78 .126 .672 6.19 <.001
Cyber (AI and subACC) .104 .039 .275 2.678 .012
SPP .05 .034 .153 1.467 .153

N ¼ 36 Model R square ¼ .737

Table 1C

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .033 .037 .099 .894 .379
Passenger type .096 .037 .289 2.567 .016
Solo drive .781 .132 .67 5.93 <.001
Cyber (AI and subACC) .118 .039 .312 2.992 .006
NTS .007 .016 .04 .399 .693

N ¼ 36 Model R square ¼ .721

Table 1D

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .034 .033 .105 1.029 .311
Passenger type .082 .033 .251 2.516 .017
Solo drive .739 .123 .637 5.997 <.001
Cyber fROI (AI and subACC) .095 .025 .351 3.74 .001

N ¼ 36 Model R square ¼ .746

Table 1E

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .05 .034 .151 1.442 .16
Passenger type .075 .033 .227 2.291 .029
Solo drive .743 .121 .64 6.141 <.001
Cyber fROI (AI and subACC) .086 .026 .317 3.348 .002
SPP .048 .032 .145 1.477 .15

N ¼ 36 Model R square ¼ .763

Table 1F

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .039 .035 .118 1.116 .273
Passenger type .088 .035 .264 2.536 .017
Solo drive .741 .127 .635 5.854 <.001
Cyber fROI (AI and subACC) .095 .026 .35 3.614 .001
NTS .004 .016 .027 .28 .782

N ¼ 36 Model R square ¼ .748

AI ¼ anterior insula; fROI ¼ functionally defined region of interest; NTS ¼ need threat scale; SE ¼ standard error; SPP ¼ susceptibility to peer pressure; subACC ¼
subgenual anterior cingulate cortex.
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Table 2
Relationship between neural activity in the mentalizing network during exclusion > inclusion in Cyberball and risk taking (percent red) in the presence of peers
in the driving simulator session
2A: Effect of neural activity in thementalizing network (DMPFC, rTPJ, and PCC), controlling for passenger type, drive order, and solo risk-taking behavior (as measured by
performance in the solodrive at the simulator); 2B: Studyof the same relationships as inTable 2Abut controls for self-reportedSPP;2C: Studyof the same relationshipsas in
Table 2A but controls for distress during the exclusion episode (Cyberball), as measured by the NTS; 2D: Study of the same relationships as in Table 2A but replaces the
anatomical ROIwith an fROI definedbasedon exclusion> inclusionwithinhypothesized anatomical regions; 2E: Studyof the same relationships as inTable 2Dbut controls
for self-reported SPP; 2F: Study of the same relationships as in Table 2D but controls for distress during the exclusion episode (Cyberball), as measured by the NTS.

Table 2A

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .005 .037 .017 .148 .884
Passenger type .075 .036 .229 2.11 .043
Solo drive .822 .132 .708 6.229 <.001
Cyber (DMPFC, rTPJ, and PCC) .079 .03 .274 2.629 .013

N ¼ 36 Model R square ¼ .698

Table 2B

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .027 .038 .082 .706 .486
Passenger type .066 .035 .202 1.888 .069
Solo drive .817 .129 .704 6.354 <.001
Cyber (DMPFC, rTPJ, and PCC) .069 .03 .237 2.287 .029
SPP .057 .035 .172 1.628 .114

N ¼ 36 Model R square ¼ .723

Table 2C

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .011 .038 .034 .292 .773
Passenger type .082 .038 .248 2.191 .037
Solo drive .825 .135 .708 6.106 <.001
Cyber (DMPFC, rTPJ, and PCC) .079 .031 .274 2.572 .015
NTS .01 .017 .063 .607 .549

N ¼ 36 Model R square ¼ .703

Table 2D

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order �.007 .036 �.02 �.185 .854
Passenger type .068 .034 .208 2.025 .052
Solo drive .828 .127 .714 6.507 <.001
Cyber fROI (DMPFC and rTPJ) .072 .023 .314 3.124 .004

N ¼ 36 Model R square ¼ .719

Table 2E

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .01 .04 .031 .26 .797
Passenger type .062 .034 .19 1.818 .079
Solo drive .824 .127 .71 6.479 <.001
Cyber fROI (DMPFC and rTPJ) .062 .025 .269 2.456 .02
SPP .038 .037 .115 1.03 .311

N ¼ 36 Model R square ¼ .729

Table 2F

Variable Unstandardized coefficients Standardized coefficients Significance

B SE Beta t

Drive order .001 .037 .002 .014 .989
Passenger type .079 .035 .239 2.242 .033
Solo drive .832 .129 .714 6.469 <.001
Cyber fROI (DMPFC and rTPJ) .075 .023 .327 3.204 .003
NTS .014 .016 .085 .853 .401

N ¼ 36 Model R square ¼ .730

DMPFC ¼ dorsomedial prefrontal cortex; fROI ¼ functionally defined region of interest; NTS¼ need threat scale; PCC¼ posterior cingulate cortex; rTPJ ¼ right temporal
parietal junction; SE ¼ standard error; SPP ¼ susceptibility to peer pressure.
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suggests that the neural measure of “social pain” may index
processes and capture information that participants are either
not consciously aware of or unwilling to report (e.g., due to
self-presentation concerns that are especially salient during
adolescence).

Strengths and limitations

The combination of highly controlled neuroimaging para-
digms with outcome data from a social interaction in a driving
simulator allowed us a high degree of control over external
confounds while still maintaining a high degree of internal val-
idity and external validity. However, limitations present oppor-
tunities for future research. First, although recruited broadly
from our target population via the state driver history record, the
final sample is not a random subset of the population, given that
participants were all volunteer responders. Second, our chief
findings are correlational; it is possible that individuals who later
took more risks in the presence of peers also showed increased
responsiveness in the social pain and mentalizing networks due
to a third variable or that susceptibility to risky peer influence
sensitizes the brain systems in question. Prior work [26] reported
that neural activity in the brain’s social pain network (including
dACC, subgenual ACC, and AI), as well as DMPFC during exclusion
> inclusion, was associated with interpersonal competence
scores in adolescents, which may also be associated with social
influences [71]. Third, driving simulators provide external val-
idity with respect to relative risk behavior under different con-
ditions while controlling for a number of confounding variables
in actual driving and ethically manipulating crash risk [38,39].
However, future research that combines parallel neural measures
with instrumented vehicles on real roads would provide addi-
tional information about the relationship between our neural
variables and naturalistic driving. Finally, we focused on recently
licensed male adolescents, given that they are the highest risk
group for fatal crash, especially in the presence of other male
adolescents [11,37]. Future research on samples that include both
men and women, as well as younger and older participants, and
other risk behaviors will inform the boundary conditions on the
effects observed. It is also possible that more robust effects of SPP
would be observed if peer pressure were more directly applied,
suggesting a key avenue for future research.

Summary

In sum, adolescents who demonstrated greatest activity in
social-cognitive (mentalizing) and social-affective (social pain)
brain systems during exclusion showed greatest susceptibility to
risk taking in the presence of peers, suggesting potential mech-
anisms of peer influence on risk taking in adolescents. Further-
more, neural activity forecasted variability in driving risk with a
peer that was not explained by self-report alone. Given that
traffic-related crashes are a leading cause of adolescent mortality
and nonfatal injury, these data also contribute understanding
that might eventually inform programs and policies to reduce
injuries and fatalities in adolescents.
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