1,119 research outputs found

    Electronic and Geometric Corrugation of Periodically Rippled, Self-nanostructured Graphene Epitaxially Grown on Ru(0001)

    Full text link
    Graphene epitaxially grown on Ru(0001) displays a remarkably ordered pattern of hills and valleys in Scanning Tunneling Microscopy (STM) images. To which extent the observed "ripples" are structural or electronic in origin have been much disputed recently. A combination of ultrahigh resolution STM images and Helium Atom diffraction data shows that i) the graphene lattice is rotated with respect to the lattice of Ru and ii) the structural corrugation as determined from He diffraction is substantially smaller (0.015 nm) than predicted (0.15 nm) or reported from X-Ray Diffraction or Low Energy Electron Diffraction. The electronic corrugation, on the contrary, is strong enough to invert the contrast between hills and valleys above +2.6 V as new, spatially localized electronic states enter the energy window of the STM. The large electronic corrugation results in a nanostructured periodic landscape of electron and holes pockets.Comment: 16 pages, 6 figure

    One particle in a box: the simplest model for a Fermigas in the unitary limit

    Full text link
    We consider a single quantum particle in a spherical box interacting with a fixed scatterer at the center, to construct a model of a degenerate atomic Fermi gas close to a Feshbach resonance. One of the key predictions of the model is the existence of two branches for the macroscopic state of the gas, as a function of the magnetic field controlling the value of the scattering length.This model is able to draw a qualitative picture of all the different features recently observed in a degenerate atomic Fermi gas close to the resonance, even in the unitary limit

    Growth and magnetism of self-organized arrays of Fe(110) wires formed by deposition on kinetically grooved W(110)

    Full text link
    Homoepitaxy of W(110) and Mo(110) is performed in a kinetically-limited regime to yield a nanotemplate in the form of a uniaxial array of hills and grooves aligned along the [001] direction. The topography and organization of the grooves were studied with RHEED and STM. The nanofacets, of type {210}, are tilted 18° away from (110). The lateral period could be varied from 4 to 12nm by tuning the deposition temperature. Magnetic nanowires were formed in the grooves by deposition of Fe at 150°C on such templates. Fe/W wires display an easy axis along [001] and a mean blocking temperature Tb=100KComment: Proceedings of ECOSS 2006 (Paris

    Tunable magnetic properties of arrays of Fe(110) nanowires grown on kinetically-grooved W(110) self-organized templates

    Full text link
    We report a detailed magnetic study of a new type of self-organized nanowires disclosed briefly previously [B. Borca et al., Appl. Phys. Lett. 90, 142507 (2007)]. The templates, prepared on sapphire wafers in a kinetically-limited regime, consist of uniaxially-grooved W(110) surfaces, with a lateral period here tuned to 15nm. Fe deposition leads to the formation of (110) 7 nm-wide wires located at the bottom of the grooves. The effect of capping layers (Mo, Pd, Au, Al) and underlayers (Mo, W) on the magnetic anisotropy of the wires was studied. Significant discrepancies with figures known for thin flat films are evidenced and discussed in terms of step anisotropy and strain-dependent surface anisotropy. Demagnetizing coeffcients of cylinders with a triangular isosceles cross-section have also been calculated, to estimate the contribution of dipolar anisotropy. Finally, the dependence of magnetic anisotropy with the interface element was used to tune the blocking temperature of the wires, here from 50K to 200 K

    Feshbach Resonance Cooling of Trapped Atom Pairs

    Full text link
    Spectroscopic studies of few-body systems at ultracold temperatures provide valuable information that often cannot be extracted in a hot environment. Considering a pair of atoms, we propose a cooling mechanism that makes use of a scattering Feshbach resonance. Application of a series of time-dependent magnetic field ramps results in the situation in which either zero, one, or two atoms remain trapped. If two atoms remain in the trap after the field ramps are completed, then they have been cooled. Application of the proposed cooling mechanism to optical traps or lattices is considered.Comment: 5 pages, 3 figures; v.2: major conceptual change

    Periodically modulated geometric and electronic structure of graphene on Ru(0001)

    Full text link
    We report here on a method to fabricate and characterize highly perfect, periodically rippled graphene monolayers and islands, epitaxially grown on single crystal metallic substrates under controlled UHV conditions. The periodicity of the ripples is dictated by the difference in lattice parameters of graphene and substrate, and, thus, it is adjustable. We characterize its perfection at the atomic scale by means of STM and determine its electronic structure in the real space by local tunnelling spectroscopy. There are periodic variations in the geometric and electronic structure of the graphene monolayer. We observe inhomogeneities in the charge distribution, i.e a larger occupied Density Of States at the higher parts of the ripples. Periodically rippled graphene might represent the physical realization of an ordered array of coupled graphene quantum dots. The data show, however, that for rippled graphene on Ru(0001) both the low and the high parts of the ripples are metallic. The fabrication of periodically rippled graphene layers with controllable characteristic length and different bonding interactions with the substrate will allow a systematic experimental test of this fundamental problem.Comment: 12 pages. Contribution to the topical issue on graphene of Semiconductor Science and Technolog

    Periodically rippled graphene: growth and spatially resolved electronic structure

    Get PDF
    We studied the growth of an epitaxial graphene monolayer on Ru(0001). The graphene monolayer covers uniformly the Ru substrate over lateral distances larger than several microns reproducing the structural defects of the Ru substrate. The graphene is rippled with a periodicity dictated by the difference in lattice parameter between C and Ru. The theoretical model predict inhomogeneities in the electronic structure. This is confirmed by measurements in real space by means of scanning tunnelling spectroscopy. We observe electron pockets at the higher parts of the ripples.Comment: 5 page

    Growth modes of Fe(110) revisited: a contribution of self-assembly to magnetic materials

    Full text link
    We have revisited the epitaxial growth modes of Fe on W(110) and Mo(110), and propose an overview or our contribution to the field. We show that the Stranski-Krastanov growth mode, recognized for a long time in these systems, is in fact characterized by a bimodal distribution of islands for growth temperature in the range 250-700°C. We observe firstly compact islands whose shape is determined by Wulff-Kaischev's theorem, secondly thin and flat islands that display a preferred height, ie independant from nominal thickness and deposition procedure (1.4nm for Mo, and 5.5nm for W on the average). We used this effect to fabricate self-organized arrays of nanometers-thick stripes by step decoration. Self-assembled nano-ties are also obtained for nucleation of the flat islands on Mo at fairly high temperature, ie 800°C. Finally, using interfacial layers and solid solutions we separate two effects on the preferred height, first that of the interfacial energy, second that of the continuously-varying lattice parameter of the growth surface.Comment: 49 pages. Invited topical review for J. Phys.: Condens. Matte

    Helium reflectivity and Debye temperature of graphene grown epitaxially on Ru(0001)

    Full text link
    It is shown that the surface of an epitaxial graphene monolayer grown on Ru(0001) could be used as a quite efficient external mirror for He-atom microscopy, with a specular reflectivity of 20% of the incident beam. Furthermore, the system is stable up to 1150 K, and the He reflectivity remains almost unchanged after exposure to air. Additionally, the high reflectivity for H2 molecules (11%) opens up the development of a H2 microprobe suitable for lithography. The Debye temperature for this epitaxial graphene monolayer has been determined from a study of the temperature dependence of the He specular intensity as a function of incident parameters. A value of 1045 K has been obtained, which is much higher than the 590 K reported for graphite under similar conditions, and close to the value of 1287 K calculated for isolated grapheneThis work was supported by the Ministerio de Educación y Ciencia through the program CONSOLIDER-INGENIO on Molecular Nanoscience (Project No. CSD 2007-00010), Project No. FIS2010-18847, and a Juan de la Cierva grant (A.P.), and by Comunidad de Madrid through the program NANOBIOMAGNE

    Strong paramagnon scattering in single atom Pd contacts

    Get PDF
    Among all transition metals, palladium (Pd) has the highest density of states at the Fermi energy at low temperatures yet does not fulfill the Stoner criterion for ferromagnetism. However, its close vicinity to magnetism renders it a nearly ferromagnetic metal, which hosts paramagnons, strongly damped spin fluctuations. Here we compare the total and the differential conductance of mono-atomic contacts consisting of single Pd and Cobalt (Co) atoms between Pd electrodes. Transport measurements reveal a conductance for Co of 1\,G0, while for Pd we obtain 2\,G0. The differential conductance of mono-atomic Pd contacts shows a drop with increasing bias, which gives rise to a peculiar \Lambda-shaped spectrum. Supported by theoretical calculations we correlate this finding with the lifetime of hot quasi-particles in Pd which is strongly influenced by paramagnon scattering. In contrast to this, Co adatoms locally induce magnetic order and transport through single cobalt atoms remains unaffected by paramagnon scattering, consistent with theory.PostprintPeer reviewe
    corecore