891 research outputs found

    Migration of Earth-size planets in 3D radiative discs

    Full text link
    In this paper, we address the migration of small mass planets in 3D radiative disks. Indeed, migration of small planets is known to be too fast inwards in locally isothermal conditions. However, thermal effects could reverse its direction, potentially saving planets in the inner, optically thick parts of the protoplanetary disc. This effect has been seen for masses larger than 5 Earth masses, but the minimum mass for this to happen has never been probed numerically, although it is of crucial importance for planet formation scenarios. We have extended the hydro-dynamical code FARGO to 3D, with thermal diffusion. With this code, we perform simulations of embedded planets down to 2 Earth masses. For a set of discs parameters for which outward migration has been shown in the range of [5,35][5, 35] Earth masses, we find that the transition to inward migration occurs for masses in the range [3,5][3, 5] Earth masses. The transition appears to be due to an unexpected phenomenon: the formation of an asymmetric cold and dense finger of gas driven by circulation and libration streamlines. We recover this phenomenon in 2D simulations where we control the cooling effects of the gas through a simple modeling of the energy equation.Comment: 17 pages, 20 figures, accepted. MNRAS, 201

    The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores

    Full text link
    The basic structure of the solar system is set by the presence of low-mass terrestrial planets in its inner part and giant planets in its outer part. This is the result of the formation of a system of multiple embryos with approximately the mass of Mars in the inner disk and of a few multi-Earth-mass cores in the outer disk, within the lifetime of the gaseous component of the protoplanetary disk. What was the origin of this dichotomy in the mass distribution of embryos/cores? We show in this paper that the classic processes of runaway and oligarchic growth from a disk of planetesimals cannot explain this dichotomy, even if the original surface density of solids increased at the snowline. Instead, the accretion of drifting pebbles by embryos and cores can explain the dichotomy, provided that some assumptions hold true. We propose that the mass-flow of pebbles is two-times lower and the characteristic size of the pebbles is approximately ten times smaller within the snowline than beyond the snowline (respectively at heliocentric distance r<ricer<r_{ice} and r>ricer>r_{ice}, where ricer_{ice} is the snowline heliocentric distance), due to ice sublimation and the splitting of icy pebbles into a collection of chondrule-size silicate grains. In this case, objects of original sub-lunar mass would grow at drastically different rates in the two regions of the disk. Within the snowline these bodies would reach approximately the mass of Mars while beyond the snowline they would grow to 20\sim 20 Earth masses. The results may change quantitatively with changes to the assumed parameters, but the establishment of a clear dichotomy in the mass distribution of protoplanets appears robust, provided that there is enough turbulence in the disk to prevent the sedimentation of the silicate grains into a very thin layer.Comment: In press in Icaru

    RISK IN HUMAN RESOURCE MANAGEMENT AND IMPLICATIONS FOR EXTENSION PROGRAMMING - RESULTS OF FOCUS GROUP DISCUSSIONS WITH DAIRY AND GREEN INDUSTRY MANAGERS

    Get PDF
    Employees are both a source of risk and means of addressing risk, and good employee management practices can increase risk resilience. Forty green industry managers and 22 dairy managers discussed personnel issues related to their industry. Influx of Hispanic labor has changed personnel management and the focus of risk management.Teaching/Communication/Extension/Profession,

    Influence of viscosity and the adiabatic index on planetary migration

    Full text link
    The strength and direction of migration of low mass embedded planets depends on the disk's thermodynamic state, where the internal dissipation is balanced by radiative transport, and the migration can be directed outwards, a process which extends the lifetime of growing embryos. Very important parameters determining the structure of disks, and hence the direction of migration, are the viscosity and the adiabatic index. In this paper we investigate the influence of different viscosity prescriptions (alpha-type and constant) and adiabatic indices on disk structures and how this affects the migration rate of planets embedded in such disks. We perform 3D numerical simulations of accretion disks with embedded planets. We use the explicit/implicit hydrodynamical code NIRVANA that includes full tensor viscosity and radiation transport in the flux-limited diffusion approximation, as well as a proper equation of state for molecular hydrogen. The migration of embedded 20Earthmass planets is studied. Low-viscosity disks have cooler temperatures and the migration rates of embedded planets tend toward the isothermal limit. In these disks, planets migrate inwards even in the fully radiative case. The effect of outward migration can only be sustained if the viscosity in the disk is large. Overall, the differences between the treatments for the equation of state seem to play a more important role in disks with higher viscosity. A change in the adiabatic index and in the viscosity changes the zero-torque radius that separates inward from outward migration. For larger viscosities, temperatures in the disk become higher and the zero-torque radius moves to larger radii, allowing outward migration of a 20 Earth-mass planet to persist over an extended radial range. In combination with large disk masses, this may allow for an extended period of the outward migration of growing protoplanetary cores

    Surface waves in protoplanetary disks induced by outbursts: Concentric rings in scattered light

    Full text link
    Context: Vertically hydrostatic protoplanetary disk models are based on the assumption that the main heating source, stellar irradiation, does not vary much with time. However, it is known that accreting young stars are variable sources of radiation. This is particularly evident for outbursting sources such as EX Lupi and FU Orionis stars. Aim: We investigate how such outbursts affect the vertical structure of the outer regions of the protoplanetary disk, in particular their appearance in scattered light at optical and near-infrared wavelengths. Methods: We employ the 3D FARGOCA radiation-hydrodynamics code, in polar coordinates, to compute the time-dependent behavior of the axisymmetric disk structure. The outbursting inner disk region is not included explicitly. Instead, its luminosity is added to the stellar luminosity and is thus included in the irradiation of the outer disk regions. For time snapshots of interest we insert the density structure into the RADMC-3D radiative transfer code and compute the appearance of the disk at optical/near-infrared wavelengths. Results: We find that, depending on the amplitude of the outbursts, the vertical structure of the disk can become highly dynamic, featuring circular surface waves of considerable amplitude. These "hills" and "valleys" on the disk's surface show up in the scattered light images as bright and dark concentric rings. Initially these rings are small and act as standing waves, but they subsequently lead to outward propagating waves, like the waves produced by a stone thrown into a pond. These waves continue long after the actual outburst has died out. Conclusions: We propose that some of the multi-ringed structures seen in optical/infrared images of several protoplanetary disks may have their origin in outbursts that occurred decades or centuries ago.Comment: Accepted for publication in A&A Letter

    Meridional circulation of gas into gaps opened by giant planets in three-dimensional low-viscosity disks

    Full text link
    We examine the gas circulation near a gap opened by a giant planet in a protoplanetary disk. We show with high resolution 3D simulations that the gas flows into the gap at high altitude over the mid-plane, at a rate dependent on viscosity. We explain this observation with a simple conceptual model. From this model we derive an estimate of the amount of gas flowing into a gap opened by a planet with Hill radius comparable to the scale-height of a layered disk (i. e. a disk with viscous upper layer and inviscid midplane). Our estimate agrees with modern MRI simulations(Gressel et al., 2013). We conclude that gap opening in a layered disk can not slow down significantly the runaway gas accretion of Saturn to Jupiter-mass planets.Comment: in press as a Note in Icaru

    Evolution of inclined planets in three-dimensional radiative discs

    Full text link
    While planets in the solar system only have a low inclination with respect to the ecliptic there is mounting evidence that in extrasolar systems the inclination can be very high, at least for close-in planets. One process to alter the inclination of a planet is through planet-disc interactions. Recent simulations considering radiative transport have shown that the evolution of migration and eccentricity can strongly depend on the thermodynamic state of the disc. We extend previous studies to investigate the planet-disc interactions of fixed and moving planets on inclined and eccentric orbits. We also analyse the effect of the disc's thermodynamic properties on the orbital evolution of embedded planets in detail. The protoplanetary disc is modelled as a viscous gas where the internally produced dissipation is transported by radiation. For locally isothermal discs, we confirm previous results and find inclination damping and inward migration for planetary cores. For low inclinations i < 2 H/r, the damping is exponential, while di/dt is proportional to i^-2 for larger i. For radiative discs, the planetary migration is very limited, as long as their inclination exceeds a certain threshold. If the inclination is damped below this threshold, planetary cores with a mass up to approximately 33 Earth masses start to migrate outwards, while larger cores migrate inwards right from the start. The inclination is damped for all analysed planet masses. In a viscous disc an initial inclination of embedded planets will be damped for all planet masses. This damping occurs on timescales that are shorter than the migration time. If the inclination lies beneath a certain threshold, the outward migration in radiative discs is not handicapped. Outward migration is strongest for circular and non-inclined orbits

    Geochemical modelling of water-rock interaction

    Get PDF
    CO2 geological storage is one of the most promising technologies for reducing atmospheric emissions of greenhouse gas. In this work we present and discuss a new approach geochemical modelling for evaluating the effects of short-medium term CO2 disposal in deep geologic formations that has been tested in the Weyburn test site (Saskatchewan, Canada), where since September 2000 5000 t/day of supercritical CO2 are injected. The geochemical modeling has been performed by using the code PRHEEQC (V2.11) software package, via thermodynamic corrections to the code default database. First, we reconstructed the in-situ reservoir (62°C and 0.1 MPa) chemical composition, including pH, by the chemical equilibrium among the various phases, and we evaluated the boundary conditions (e.g. PCO2 , PH2S), which are necessary for the implementation of reaction path modeling. This is the starting point to assess the geochemical impact of CO2 into the oil reservoir and, as main target, to quantify water-gas-rock reactions. Furthermore, we identified possible compositions of the initially reservoir liquid phases by assuming the equilibrium conditions for the mineral assemblage with respect to a Na-Cl water (Cl/Na=1.2). Then we computed the kinetic evolution of the CO2-rich Weyburn brines interacting with the host-rock minerals, performed over 100 years after injection. Results of reaction path modeling suggest that, in this period, CO2 can be neutralized by solubility (as CO2 (aq)) and mineral trapping through Dawsonite precipitation. In order to validate our geochemical model we have simulated the geochemical impact of three years of CO2 injection (September 2000-2003) by kinetically controlled reactions and we have compared the computed and measured data. The calculated chemical composition after the CO2 injection is consistent with the analytical data of samples collected in 2003 with an error within 5 % for most analytical species, with the exception of the Ca and Mg contents (error > 90%), likely due to the complexation effect of carboxilic acid

    Stochastic field theory for a Dirac particle propagating in gauge field disorder

    Get PDF
    Recent theoretical and numerical developments show analogies between quantum chromodynamics (QCD) and disordered systems in condensed matter physics. We study the spectral fluctuations of a Dirac particle propagating in a finite four dimensional box in the presence of gauge fields. We construct a model which combines Efetov's approach to disordered systems with the principles of chiral symmetry and QCD. To this end, the gauge fields are replaced with a stochastic white noise potential, the gauge field disorder. Effective supersymmetric non-linear sigma-models are obtained. Spontaneous breaking of supersymmetry is found. We rigorously derive the equivalent of the Thouless energy in QCD. Connections to other low-energy effective theories, in particular the Nambu-Jona-Lasinio model and chiral perturbation theory, are found.Comment: 4 pages, 1 figur
    corecore