4,259 research outputs found
Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings
Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles
Friction and morphology of magnetic tapes in sliding contact with nickel-zinc ferrite
Friction and morphological studies were conducted with magnetic tapes containing a Ni-Zn ferrite hemispherical pin in laboratory air at a relative humidity of 40 percent and at 23 C. The results indicate that the binder plays a significant role in the friction properties, morphology, and microstructure of the tape. Comparisons were made with four binders: nitrocellulose; poly (vinyledene) chloride; cellulose acetate; and hydroxyl-terminated, low molecular weight polyester added to the base polymer, polyester-polyurethane. The coefficient of friction was lowest for the tape with the nitrocellulose binder and increased in the order hydroxylterminated, low molecular weight polyester resin; poly (vinyledene) chloride; and cellulose acetate. The degree of enclosure of the oxide particles by the binder was highest for hydroxyl-terminated, low molecular weight polyester and decreased in the order cellulose acetate, poly (vinyledene) chloride, and nitrocellulose. The nature of deformation of the tape was a factor in controlling friction. The coefficient of friction under elastic contact conditions was considerably lower than under conditions that produced plastic contacts
A Survey of Morphing Techniques
Image morphing provides the tool to generate the flexible and powerful visual effect. Morphing depicts the transformation of one image into another image. The process of image morphing starts with the feature specification phase and then proceeds to warp generation phase, followed by the transition control phase. This paper surveys the various techniques available for all three stages of image morphing
Bending and wrinkling as competing relaxation pathways for strained free-hanging films
An equilibrium phase diagram for the shape of compressively strained
free-hanging films is developed by total strain energy minimization. For small
strain gradients {\Delta}{\epsilon}, the film wrinkles, while for sufficiently
large {\Delta}{\epsilon}, a phase transition from wrinkling to bending occurs.
We consider competing relaxation mechanisms for free-hanging films, which have
rolled up into tube structures, and we provide an upper limit for the maximum
achievable number of tube rotations.Comment: 4 pages, 4 figure
Dynamics of Phononic Dissipation at the Atomic Scale: Dependence on Internal Degrees of Freedom
Dynamics of dissipation of a local phonon distribution to the substrate is a
key issue in friction between sliding surfaces as well as in boundary
lubrication. We consider a model system consisting of an excited nano-particle
which is weakly coupled with a substrate. Using three different methods we
solve the dynamics of energy dissipation for different types of coupling
between the nano-particle and the substrate, where different types of
dimensionality and phonon densities of states were also considered for the
substrate. In this paper, we present our analysis of transient properties of
energy dissipation via phonon discharge in the microscopic level towards the
substrate. Our theoretical analysis can be extended to treat realistic
lubricant molecules or asperities, and also substrates with more complex
densities of states. We found that the decay rate of the nano-particle phonons
increases as the square of the interaction constant in the harmonic
approximation.Comment: 10 pages, 6 figures, submitted to Phys. Rev.
Dictionary Learning and Sparse Coding-based Denoising for High-Resolution Task Functional Connectivity MRI Analysis
We propose a novel denoising framework for task functional Magnetic Resonance
Imaging (tfMRI) data to delineate the high-resolution spatial pattern of the
brain functional connectivity via dictionary learning and sparse coding (DLSC).
In order to address the limitations of the unsupervised DLSC-based fMRI
studies, we utilize the prior knowledge of task paradigm in the learning step
to train a data-driven dictionary and to model the sparse representation. We
apply the proposed DLSC-based method to Human Connectome Project (HCP) motor
tfMRI dataset. Studies on the functional connectivity of cerebrocerebellar
circuits in somatomotor networks show that the DLSC-based denoising framework
can significantly improve the prominent connectivity patterns, in comparison to
the temporal non-local means (tNLM)-based denoising method as well as the case
without denoising, which is consistent and neuroscientifically meaningful
within motor area. The promising results show that the proposed method can
provide an important foundation for the high-resolution functional connectivity
analysis, and provide a better approach for fMRI preprocessing.Comment: 8 pages, 3 figures, MLMI201
Theory of friction: contribution from fluctuating electromagnetic field
We calculate the friction force between two semi-infinite solids in relative
parallel motion (velocity ), and separated by a vacuum gap of width . The
friction force result from coupling via a fluctuating electromagnetic field,
and can be considered as the dissipative part of the van der Waals interaction.
We consider the dependence of the friction force on the temperature , and
present a detailed discussion of the limiting cases of small and large and
.Comment: 15 pages, No figure
Role of friction-induced torque in stick-slip motion
We present a minimal quasistatic 1D model describing the kinematics of the
transition from static friction to stick-slip motion of a linear elastic block
on a rigid plane. We show how the kinematics of both the precursors to
frictional sliding and the periodic stick-slip motion are controlled by the
amount of friction-induced torque at the interface. Our model provides a
general framework to understand and relate a series of recent experimental
observations, in particular the nucleation location of micro-slip instabilities
and the build up of an asymmetric field of real contact area.Comment: 6 pages, 5 figure
Quantitative Nanofriction Characterization of Corrugated Surfaces by Atomic Force Microscopy
Atomic Force Microscopy (AFM) is a suitable tool to perform tribological
characterization of materials down to the nanometer scale. An important aspect
in nanofriction measurements of corrugated samples is the local tilt of the
surface, which affects the lateral force maps acquired with the AFM. This is
one of the most important problems of state-of-the-art nanotribology, making
difficult a reliable and quantitative characterization of real corrugated
surfaces. A correction of topographic spurious contributions to lateral force
maps is thus needed for corrugated samples. In this paper we present a general
approach to the topographic correction of AFM lateral force maps and we apply
it in the case of multi-asperity adhesive contact. We describe a complete
protocol for the quantitative characterization of the frictional properties of
corrugated systems in the presence of surface adhesion using the AFM.Comment: 33 pages, 9 figures, RevTex 4, submitted to Journal of Applied
Physic
Transverse thermal depinning and nonlinear sliding friction of an adsorbed monolayer
We study the response of an adsorbed monolayer under a driving force as a
model of sliding friction phenomena between two crystalline surfaces with a
boundary lubrication layer. Using Langevin-dynamics simulation, we determine
the nonlinear response in the direction transverse to a high symmetry direction
along which the layer is already sliding. We find that below a finite
transition temperature, there exist a critical depinning force and hysteresis
effects in the transverse response in the dynamical state when the adlayer is
sliding smoothly along the longitudinal direction.Comment: 4 pages, 4 figures, to appear in Phys. Rev. Let
- …
