Atomic Force Microscopy (AFM) is a suitable tool to perform tribological
characterization of materials down to the nanometer scale. An important aspect
in nanofriction measurements of corrugated samples is the local tilt of the
surface, which affects the lateral force maps acquired with the AFM. This is
one of the most important problems of state-of-the-art nanotribology, making
difficult a reliable and quantitative characterization of real corrugated
surfaces. A correction of topographic spurious contributions to lateral force
maps is thus needed for corrugated samples. In this paper we present a general
approach to the topographic correction of AFM lateral force maps and we apply
it in the case of multi-asperity adhesive contact. We describe a complete
protocol for the quantitative characterization of the frictional properties of
corrugated systems in the presence of surface adhesion using the AFM.Comment: 33 pages, 9 figures, RevTex 4, submitted to Journal of Applied
Physic