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SUMMARY

The objective of the program was to develop material coatings for an air-

lubricated compliant journal bearing for an automotive gas-turbine engine.

Based on past experience, A-286 was selected as the journal base material and

Inconel X-750 was selected as the foil base material. Hard, wear-resistant

coatings and soft, low shear strength coatings were selected. The coatings

were expected to function in either 540°C (1000°F) or 650°C (1200°F) ambient.

Soft lubricant coatings are generally limited in temperature. Therefore, most

of the emphasis has been on the hard, wear-resistant coatings.

The coatings on the journal coupons were applied by sputtering, plasma spraying,

detonation gun process, electroplating, fusion process, diffusion process and

other proprietary processes. For the foils, since they are thin, flame spray-

ing and diffusion techniques could not be used, but all other processes were

used. Based on previous experience, a variety of coatings were selected for

the tests. The coating materials covered were: TiC, B4C , Cr3C2, WC, SiC, CrB2,

TiB2, Cr203, Ai203, Si3N4, Tribaloy 800, CaF2, CaF2-BaF 2 eutectic, Ni-Co, Ag,

CdO and Graphite, and other proprietary compounds.

The coatings on test coupons were subjected to static oven screening tests.

The tests were conducted to screen out these coatings which could not stand

the extended thermal exposure and thermal cycling. The tests consisted of ex-

posure of material samples in an oven for 300 hours duration at service tem-

peratures of 540°C or 650°C, and exposure to I0 temperature cycles from room

temperature of the service temperatures.

After the oven tests, the specimens were examined using the following techniques:

flex bending test, tape test, scratch test, superficial hardness test, weight

change and metallurgical examinations. The surface morphology of coatings was

examined in the Scanning Electron Microscope (SEM). Some coated specimens

were sectioned and examined in the SEM for interfacial bond. An X-Ray Energy

Dispersive Analyzer (X-REDA) was utilized to determine the elemental composition

of specific particles or structures on the samples. Analysis by reflection

electron diffraction was made to determine any change in the chemical composi-

tion of the coatings during the oven tests.

xi



Basedon the specimenexaminations, the following coatings were recommended

for the start-stop cycle tests: TiC (sputtered), Cr203 (sputtered), Si3N4
(sputtered), CdOand Graphite (fused) - HL-800,KamanDES- proprietary

coating, CrB2 (plasmasprayed), Cr3C2 (detonation gun) and NASAPS 106 (plasma
sprayed).

The start-stop cycle tests consisted of testing partial-arc bearings at 14 kPa
(2 psi) loading basedon bearing projected area for i000 start-stop cycles at
roomtemperatureand i000 start-stop cycles at the service temperatures. Static
and dynamicbreakawaytorques were recorded during the tests. Basedon torque
data, visual examinationsand metallurgical examinationsof the bearing sur-
faces, the following combinationswere recommended:HL-800TM(CdOand Graphite)

on foil versus Linde Ni-Cr bondedCr3C2 on Journal up to 370=C(700=F); Plasma
sprayedNASAPS120 (60%T400, 20%Ag and 20%CaF2)with Ni-Aiuminide under-
coat on journal versus uncoatedheat-treated foil up to 540°C(1000°F); and
KamanDESon journal and foil up to 650°C(1200°F).

Themost promising combination (KamanDESversus itself) was tested at 35 kPa
(5 psi) loading in partial-arc bearing form. This coating combinationsuccess-
fully completed2000start-stop cycles. Someof the coating wasworn under

the loaded area. Therewassomecoating left on the grain boundaries, and
the remaining area wasoxidized during exposure to higher temperature.

This combinationwas further tested at 14 kPa (2 psi) loading as a complete
bearing. It completedi000 start-stop cycles. A considerable amountof loose
wear debris collected at the interface and, apparently, could not easily escape.
As a result, it damagedthe surfaces.

xil



I. INTRODUCTION

This report describes Part II of a technology program performed for the

NASA Lewis Research Center for the development of hydrodynamic air lubri-

cated journal bearings for an automotive gas turbine engine. Part I of

the program (Reference i) had focused on advancing compliant surface Journal

bearing technology by providing design information through an experimental and

analytical effort. Part II of the program has investigated and tested

materials and coatings for compliant surface bearings and journals good

to either 540°C (1000°F) or 650°C (1200°F) environment.

BACKGROUND

The compliant foil air bearing offers the ideal solution to the problem of

a support bearing for a high-speed, high-performance, vehicular, gas-turbine

engine rotor. This is particularly so at the turbine end where the tempera-

tures are at such a level as to preclude the use of liquid lubricants because

of short-term vaporization, longer term coking of oil seals and bearings and

the possibility of fire hazards. The use of a foil air bearing also offers

reduced power losses due to lower frictional drag at high speed.

In the recent tasks of the subject technology program, the MTI Hydresil TM

compliant hydrodynamic journal foil bearing was extensively evaluated

to achieve a greater understanding of the characteristics of the foil type

of air bearing. This was done from dynamic measurements of film thickness

in the gas film around the bearing and the determination of maximum load ca-

pacity at elevated temperatures.

Equally important to the success of the hydrodynamic foil bearing, particularly

when having to operate over a temperature range from normal ambient up to 650°C

(1200°F) and to speeds up to 60,000 rpm, is the selection of the journal and

foil substrate materials and of wear resistant and lubricant coatings. The

materials and coatings must be suitable for the range of environmental temper-

atures, be capable of surviving the start and stop sliding contact cycles prior



to rotor lift-off and at touchdown,and survive occasional short-time

hlgh-speed rubs under representative loading of the engine,rotor weight
at the bearings and in this case loading was14 kPa (2 psi) basedon
bearing projected area.

Limited evaluations of materials and coatings for foil bearings at tempera-
tures up to 540°C(1000°F)were madeat MTI (Reference2).

In the present program, a moreintensive study has beenundertakenin
selecting a numberof candidate materials and coatings, in screening,
dynamicrig testing at temperaturesup to 650°C(1200°F)and in the deter-
mination of specimenperformance. In this work the dynamictesting consisted
of the simulation of start and stop sliding contacts. The largest variable
has beenthe selection of wear resistant and lubricant coatings.

PROGRAM OBJECTIVE

The objective of the program for the development of an air-lubrlcated, compliant

journal bearing for an automotive gas-turbine engine was to achieve improved

materials and surface coatings capable of meeting the start-stop sliding

duties at turbine end temperature and loading conditions. This objective has

been accomplished. A number of candidate materials and coatings for the

bearing foils and Journal were selected, subjected to static oven screenin_

tests, and dynamically tested in a modified test rig ,Lnder simulated engine

operating conditions in order to arrive at optimum solutions.

PROGRAM APPROACH

In the continuation tasks of the program for the development of an air-lubri-

cated, compliant Journal bearing for an automotive gas turbine engine, an

experimental study has been performed to achieve improved materials and surface

coatings capable of start-stop sliding operation under temperatures and loadings

representative of the turbine end of the engine.

The program has accomplished the following significant activities on materials

and coatings suitable for bearing foils and journals:

2



• Select and prepare some30 specimencombinationsand
statically oven test themto temperaturesof 540°C(1000°F)
and 650°C(1200°F).

• Modify the MTIJournal foil bearing and material tester used in
the earlier tasks of this program, for endurancetesting of partial-
arc foll bearing specimensunder start-stop cycles to temperatures
of 5400C(1000°F)and 650°C(1200°F).

• Dynamically test some20 material and coating specimencombinations
selected from the static screening tests, under start-stop cycles
at 14 kPa (2 psi) loading and at 5400C(1000°F)and 650°C(1200°F)
temperature levels.

• Performadditional start-stop cycle tests with the most promising
candidate at 35 kPa (5 psi) loading and elevated temperatures.

• Build the most promising candidate into completebearings and con-
duct elevated temperaturestart-stop cycle tests to ensure that no

coating migration occurs which could causejammingin the bearing
clearance.

Extremely important in the proposedprogramhas been the effort to ensure the
quality of specimens,care in screening, planning of the test matrices and
the quality of specimenanalysis.

Theauthors wish to express their appreciation to S. Frank Murray, Research

Engineer, Institute for Wear Control Research, RPI, for his invaluable guidance

in choosing the matrix of coatings to be investigated.



II. MATERIAL SELECTION AND PREPARATION

MATERIAL SURVEY

An extensive literature search was conducted to select the possible candidate

materials for journal and foil substrates and coatings. The selection was

based on the literature search, past experience and consultations with personnel

at RPI and NASA, and included some new promising materials, previously not

explored. To keep the number of variables to a minimum, one Journal substrate

and one loll substrate were selected; but a large number of coatings to be

applied on foil and journal substrates were included.

The selected materials and coatings have to meet a wide range of exacting

requirements over the operating temperature range, these include:

• Good mechanical properties (hardness, yield strength, ductility and

rupture strength) at elevated temperatures

• Dimensional stability

• Corrosion and oxidation resistance

• Compatibility between foil and Journal surface coatings

• Shock resistance; thermal and impact

• Compatibility between substrate and surface coatings

• Good machining and formabillty characteristics

• High thermal conductivity to rapidly dissipate frictional heat from

the interface

• Thermal properties compatible with the coatings in order to minimize

interface stresses

• Good antl-galling characteristics should the coatings be penetrated

• Good spring properties in case of foils

• Formation of soft, protective oxide films

• Low surface friction and longer wear llfe

• Availability at acceptable cost



Some of the criteria mentioned previously need some clarification. Although

hardness, per se, is a poor criterion _ince many hard coatings are subjected

to excessive abrasive weaO, experience has shown that for a given material,

the higher the hardness, the smaller the true area of contact and, therefore,

the less likelihood of gross interactions between the surfaces. In addition,

it should be noted that low shear strength solid lubricant films are usually

more effective on hard substrates.

There is considerable evidence to show that coating materials having hexagonal

crystal structures and layered lattice structures tend to wear-in smoothly with

much less tendency for surface damage than those materials which fall into other

crystal classifications. While a hexagonal structure and layered lattice

structure are no guarantee of sliding compatibility, it has been established that

the most promising gas-bearing materials either have these structures or contain

some constituent with these structures.

Certain naturally-occurring oxide films can provide protection for metallic

surfaces sliding in contact. In addition, many ceramic combinations can interact

to form eutectic compounds which behave as low shear strength solid films. In

most cases, such preferential interactions are limited to high-temperature or

high-energy input conditions, but the possibility of deriving some benefit from

this type of reaction should not be overlooked since this effect would be most

evident during very severe operating conditions such as a high speed rub at

high ambient temperatures.

SELECTION OF MATERIALS

Foil Substrate Material Selection

The commercially available superalloys for high-temperature applications which

can be used for foil substrate are Inconel X-750, Inconel 718, 17-7 PH (TH 1050),

Hastelloy B, Rene 41, and Haynes 25. Their relevant mechanical and thermal

properties, and chemical compositions are shown in Tables II.i and 11.2, and

Figures II.i to 11.4. To date, Inconel X-750 has been used as the preferred high-

temperature foil material because of its excellent physical properties at tem-

peratures up to at least 650°C (1200°F), ease of heat treatment, good spring

properties, availability and cost. However, this alloy is difficult to coat
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TABLE II. 2

MECHANICAL AND THERMAL PROPERTIES OF CANDIDATE SUBSTRATE MATERIALS

Alloy

Desi_na=ion

Inconel

X-Tfi0

inconel

X-7i8

Rene

Haynes

2_

17-- 9_

IH 115¢I

17-7 ?H

(TH 1050)

Hasce_lo7 3

Data

Presented

Sheet Bar

i000 Kour

Rupcurs

S_rength

MPs(ksi)

Modulus of

Elasticity

GP8 (106 ps£)

Heat Temperature

Condition "C('F)

Cold Rolled _ RT(21"C)

705"C/20 650(1200) 365(53)

_ours/AC 760(1400) 145(21)

I150/2/AC ÷ RT 21&(31.0) 11.95(83)

845/24/AC ÷ 650(1200) &69(68) 176(25.5) 20.6(143)

705/20/AC 760(1400) _07(30) 166(24.0) 22.2(154)

925/I/AC ÷ RT

720/8/FC 650(1200) 586(85)

55°/hr to 620/AC 760(1400) 172(25)

960/I/AC ÷ RT !00(29.0) 11.2 (78)

720/8/FC 650(1200) 592(86) 164(23.7) 21.3(1_8)

55"/hr to IISO/AC 760(i&00) 172(25) 154(22.3) 23.2(161)

I065/½/AC _ RT

760/16/AC 650(1200) 551(80)

760(1400) 386(56)

1065/&/AC _ RT 220(31.9) S.9 (62)

760/16/AC 650(1200) 689(100) iS2(26.&) 19.6(136)

760(1400) 510(7&) 173(25,1) 21.3(!_8)

II75/!/RAC RT 225(32.6) 9.4 (65)

Cold Workable 630(1200) 174(25,2) 21.5(I&9)

760(1400) 121(17.5) _15"C 163(23.7) 23.6(16&)

II75/I/RAC 200(29.0)

Col_ Workable 159(23.0)

5:9,':,/AC

565,'16/AC

RT

650(1200)

760(1600)

RT

&25(800)

&80(900)

RT

_25(800)

RT

650(1200)

760(I&00)

RT

630(1200)

760(I&00)

II50/2/RAC

Cold Workable

208(30.2) 730"C

589(100)

&83(71)

359(52) _80"C

593(86)

172(25)

3lT(66)

10&(15)

980/i/0Q ÷

x 7:0116/AC

196(2S.5)

179(26.0)

203(29.5)

!90(27.5)

161(23.&)

200(_9.1)

153(22.2)

I_2(20.6)

Cosff. of

Thermal Expansion

21"C to Temp. x

10-6/'C (70°F co

Ttmp. x IO-6/'T)

12.53(6,96) 95"C

15.1_(8._i)

15.91(8.84)

12.78(7.10) 95°C

15.12($._0)

16.02($.90)

11.94(6.63) 95"C

14.00(T.80)

14.76(_.I0)

12.29(6.$3) 95"C

I&.76(S.20)

15.48(g.60)

540°C

11.90(6.60)

540°C i3.00(T.=O)

13.00(7.20)

10.!0(5.60)

315"C 11.90(6.60)

ii.5_(6._i) 95"C

12.00(6.66)

14.00(7.78)

16.51(9.17)

17.78(9.$8)

18.58(i0.32)

Thermal

Conductlvi_y

WI(m.K)

(BTU/ft2/

hr/*Flln.)

16.3(113)

22.2(i5_)

23.0(160)

i_.7(102)

20.7(i&4)

12.2 (BS)

16.&(lid)

12.7 (88)

2_.8(i72)

AC - Air Cooled

RAC - .%api_ Air Cooled

OQ - Oil _uenched
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effectively with solid lubricant or hard wear-reslstant materials because of

its poor amendability to chemical and mechanical pretreatment. In addition,

nickel-base alloys usually experience surface damage (galling) as soon as any

part of the coating is penetrated.

Previous experience has shown that alloys which contain molybdenum and/or

cobalt as a major alloying elements have superior sliding characteristics,

and do not gall as much as nickel-base alloys. This is probably because of

the formation of beneficial oxide films. Alloys high in molybdenum, such as

Hastelloy B and cobalt-base alloy Haynes 25, have a somewhat better sliding

characteristic and probably can survive until a substantial percentage of

coating has been worn away.

However, from Figure II.i, it is observed that the yield strengths of Hastelloy

B and Haynes 25 are low. A simple analysis using the continuous beam theory

(Appendix A) has shown that, assuming an average load of 210kPa (30 psi) on the

top foil resulting from high speed dynamic loading, the stresses developed in

the top foil are approximately 280 MPa (40,000 psi). Therefore, from a strength

point of view, Hastelloy B and Haynes 25 would be marginal. Fatigue properties

of both materials are acceptable (Figure 11.4). Neither of these materials can be

age hardened. However, the tensile properties can be increased by prior cold

work. In the case of Haynes 25 with i0 percent cold work, there is appreciable

increase in the yield and tensile strengths (Figures II.i and 11.2) but there is

appreciable loss of ductility (Figure 11.3). A compromise has to be made between

desired ductility and tensile properties. Also special cold working procedures

make availability and cost a problem. Therefore, it is not recommended as a

suitable material. After cold working, Hastelloy B experiences an increase in

yield strength but there is a considerable loss of ductility at high temperature.

However aging of this material for a long time at high temperature increases

its yield strength but reduces ductility; and hence it is not a good high

temperature candidate. Hastelloy S and Hastelloy X (nickel base), although

not considered here, have the same problem.

The precipitation hardening treatment of 17-7 PH material is carried out in the

range of 480°C (900°F) to 570°C (1050°F). Therefore, 17-7 PH (TH 1050) would

12



lose its strength at temperaturesabove570°C(I050°F) and consequently
wouldnot be acceptable (for a similar reason 17-4 PHwouldnot be suitable
as a journal material). As far as mechanicalstrength is concerned,Inconel
X-750, Inconel 718 andRene41 wouldbe acceptable. Rene41 has low ductility
(Figure 11.3) but the fatigue properties are quite good (Figure 11.4). Fatigue
properties of Inconel X-750and 718 are marginal. Of these three materials,
Inconel X-750wasselected and recommendedbecauseof prior experience with
the material in foil bearings, acceptable mechanicaland thermal properties,
ease of heat treatment, formabillty, availability in foll form and cost.
Dependencehas to be placed on the performanceof the coatings to overcomethe
lower galling resistance of the Inconel material.

Journal Substrate Material Selection

The candidate journal materials, based on design strength considerations, are

Inconel X-750, Inconel 718, A-286, Rene 41, and 17-4 PH (H 1150). As mentioned

previously, 17-4 PH would be unsuitable from the strength point of view at 650°C

(1200°F). The coefficient of thermal expansion of Inconel X-750, Inconel 718 or

Rene 41 is lower than A-286. Since the journals will be coated with materials

having low coefficients of thermal expansion, it is advisable to choose a journal

material having a low coefficient of thermal expansion to minimize interface

stresses. Because of machinability, availability, and cost A-286 is commonly

used in high temperature gas turbine applications and while there has to be a

trade-off between these factors and the better high temperature strengths of

the other materials, it is believed that A-286 has the necessary thermal and

mechanical properties at 650°C (1200°F% and consequently it was selected as

the journal material in the program.

Selection of Surface Coatinss and Treatments

Surface coatings and treatments basically fall into two categories_ hard

wear-resistant coatings; and soft, low shear strength coatings. Coating

techniques and treatments are reviewed in Figure 11.5. It is recognized that

coating effectiveness (bond strength, wear resistance and life) may depend on

the coating technique. Therefore, it is important that potential coating

materials should be put on by several techniques.
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Depending on the coating technique and substrate, special substrate material

preparation and undercoating may be required. Nickel-base alloys (e.g. Inconel

718 and Inconel X-750) are oxidation resistant and do not require undercoating.

But iron-base alloys (e.g. A286) may oxidize, and the coating may therefore

become less tenacious so that undercoat may be useful. Another use of under-

coating is to match the thermal expansion of the mating surfaces. Nichrome

(80 percent Ni and 20 percent Cr) and Ni-Aluminide (5 percent AI and 95 percent

Ni) are commonly used as undercoating materials. Ni-Aluminide is less corro-

sion resistant in water but has better thermal shock resistance and about 20

percent higher bond strength than Nichrome. Temperature capabilities of Ni-

Aluminide are up to 760°C (1400°F) while Nichrome can be used above 760°C

(1400°F). In the case of very hard coating materials, Nichrome is usually

added as a binder to improve the ductility.

Considerable work has been done to select suitable coatings to improve the

wear of bearing surfaces (References 2 to 12). Soft lubricant films have been

successfully used up to 315-370°C (600-700°F) temperature range (References 5

to i0). Their status for foil bearing application at the start of the program

is reviewed in Table 11.3. The commonly available lubricants cannot be used

at high temperatures for extended periods. Mostly one has to depend on hard-

hard combinations. In marginally lubricated conditioms, heavv emphasis is placed

on hard coatings (References 2 to 4, ii, and 12). The status of foil bearing

materials developmental work at the start of the program is reviewed in Table 11.4.

Based on an extensive literature search and past experience at MTI, a large

number of coating candidates were selected.

The initial selection of coating combinations for the study program is given in

Table 11.5. Coupons of foil and journal substrate materials were treated with

the coatings and subjected to the static oven screening tests prior to further

grading for start-stop testing. Some of the solid lubricant combinations and

some of the hard coating combinations (the ones which oxidize at higher tem-

peratures and as a result lubricate better) were believed to work better at

higher interface temperatures and to have relatively higher coefficients of

friction at low temperatures. It should be noted that the interface temperature

depends on relative sliding speed and load. If the speeds are high, the interface

15
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temperature can be several hundred degrees even though the ambient can be at

room temperature (see Appendix B).

It will be appreciated that depending on the vehicle operating circumstance

the start-stop contacts in the bearing can occur at any temperature level,

but the majority of contacts would occur at elevated temperatures. Since

the drive gas turbine has sufficient power at start up, the main criteria

should be to choose coatings which will have long wear life even though they

may not have the best lubricating properties in terms of friction at low

temperature.

An optimum coating would of course have good lubrication properties over the

whole of the working temperature range.

In soft-hard combinations, the hard coating was put on the journal to mini-

mize the possibility of any damage since the cost of repairing and balancing

a journal may be pretty high. It is also noted that low shear strength

solid lubricant films are usually more effective on a hard substrate. An

additional consideration when the foil and the Journal are coated with two

different materials, e.g. putting coating A on the foil and coating B on the

journal, is that reversing these coatings may have a significant effect on

the results. The underlying cause of this difference is thermal in nature.

When the journal is rubbing in contact with the foil, the contact area on the

foil is fixed and all of the frictional heat is concentrated in one area, while

the contact on the journal is continuously changing with shaft rotation and the

temperature rise is much more gradual.

Thus, material transfer and frictional behavior are markedly different with

certain combinations of materials, depending on their relative positions on the

foil or on the journal. This effect would be particularly important in the case

where a soft metal film, such as silver or gold, was being used to protect one

of the surfaces.

The possibility of coating the Inconel foil by a flame spraying process was

explored. Surface roughening to 60-120 rms by grit blasting is required for

plasma sprayed coatings. Grit blasting wrinkled the foil badly and so it was

19



not possible to plasmaspray. Thedetonation gun process doesn't require

surface pretreatment, so this process was tried to put a coating of Cr3C2 on
the foil. Parametersin the process were varied and substrate wascontinuously
cooled to keep the distortion of the specimenat a minimumdue to heat and
mechanical forces. In spite of all the precautions, the loll wrinkled badly
during coating. It was felt at that time that Inconel foil usedin the
programwasnot thick enoughto withstand heat andmechanical forces during
flame spraying processes.

All combinationsselected in Table 11.5 were subjected to static tests. Some
reasons for the selection of eachcombinationare given below. The first of
the two coatings given below is on the shaft and the secondis on the foil.

Comments on Initial Combination Selection. (Reference Table 11.5)

i. TiC (sputtered) - B4C (sputtered)

Both of the coating materials will form oxides a= high interface temperatures.

The oxides will interact to form a lubricating film and should have better

characteristics. At low temperatures, this combination may have higher

coefficient of friction. TiC and B4C have cubic structures.

2. B4C (sputtered) - TiC (sputtered)

Sometimes a coating may adhere better to one substrate than another. TiC

coating may adhere better on an Inconel foil than on an A-286 shaft and vice

versa. Therefore the previous combination was switched.

3. B4C (sputtered) - B4C (sputtered)

This provides an extremely hard material coating combination.

4. CrB 2 (sputtered) - CrB 2 (sputtered)

CrB 2 has a hexagonal crystal structure. It is known that materials having

hexagonal crystal structure sometimes have superior low frictional and wear

properties. Some friction and wear tests at room temperature on hot pressed

CrB 2 against itself were made by Murray (Reference 13). It was found that this

2O



combinationhad low friction and essentially no wear. After running the tests
for an extendedperiod of time the surfaces were polished. Thecoating should
be goodfor temperaturesup to 980°C(1800°F).

5. Ni-Cr bonded CrB 2 (plasma sprayed) - TiB 2 (sputtered)

A plasma sprayed coating of CrB 2 tends to spall at 510=C (950°F). For the

coating to adhere well at 650°C (1200°F), Ni-Cr was added as a binder. TiB 2

has a hexagonal structure.

6. Ni-Cr bonded CrB 2 (plasma sprayed) - CrB 2 (sputtered)

In combination (4), CrB 2 was applied on the shaft using the sputtering technique.

Here CrB 2 is applied using the plasma spraying technique. Usually the coat-

ing technique has some effect on the adherence and mechanical properties of

the coatings.

7. Ni-Cr bonded Cr20 3 (plasma sprayed) - Silver (sputtered)

Cr203 has been used by MTI previously on gas bearing shafts. Cr20 3 spalled

at about 510°C (950°F). Ni-Cr was added as a binder; the amount was varied

to prevent spalling at 650°C (1200°F). Cr203 has a hexagonal crystalline

structure. Silver is soft and a low shear strength material at high temperatures.

It provides a strong coating at low temperatures. It should provide a good

coating provided the substrate does not oxidize. Silver has cubic structure.

8. CrB 2 (sputtered) - Cr203 (sputtered)

CrB 2 and Cr20 3 have hexagonal crystalline structure.

selected.

This new combination was

9. Borided A-286 - CrB 2 (sputtered)

Boriding of a shaft introduces CrB 2. Hardness of the surface from this process

is about Rc 70. This process is cheaper than coating by sputtering or plasma

spraying technique. This combination was selected for comparison with the re-

su!ts of combination 4.
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i0. Tribaloy 800 (plasma sprayed) - CrB 2 (sputtered)

Tribaloy 800 (made by Dupont; Co 52%, Mo 28%, Cr 17% and Si 3%) can withstand

870-980°C (1600-1800°F) due to its high chromium content. This may be a good

combination to try. Tribaloy 800's laves phase is hexagonal.

ii. Metco Cr3C 2 (with a binder) - AI20 3 (sputtered)

Chrome carbide coatings have been used by MTI in past against M_F-5. A

new combination of hard surfaces was tried here. Cr302 coating contains

hexagonal structure.

12. Linde Cr3C 2 (with a binder) - AI203 (sputtered)

This con_bination was selected to compare the Cr302 coatings made by Metco and

Linde. AI20 3 has a hexagonal structure.

13. Cr20 3 (sputtered) - Cr20 3 (sputtered)

Cr203 has a hexagonal crystalline structure. Ni-Cr binder used in plasma

spraying may not be necessary. Thin films made by sputtering may not spall.

14. WC (sputtered) - WC (sputtered)

WC is a very hard material and is known to be good in sliding. There may be an

oxidation problem over 540°C (1000°F). WC has hexagonal crystalline structure.

15. NASA PS i01 (plasma sprayed) - AI20 3 (sputtered)

NASA PS i01 contains silver, nichrome, calcium fluoride, and an oxidation

protective glass. It has been shown that it is good up to I040°C (1900°F).

Alumina is good at high temperatures. PS I01 was tried against Alumina.

NASA PS 106 is the same as PS i01 without the glass. Glass is added for oxi-

dation protection at the temperatures above 650°C. For our application, we

may not need glass. Moreover the absence of glass may improve the wear prop-

erties and there may be better matching of the thermal expansion between

coating and substrate.

16. NASA PS I01 (plasma sprayed) - CrB 2 (sputtered)

CrB 2 is hexagonal in structure. A new combination will be tried.
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17. NASA PS i01 (plasma sprayed) - Uncoated Foil

NASA PS 101 has been successfully used against the nickel base alloy, Rene

41, in an oscillating bearing application (high loads and low speeds).

18. Cr3C 2 (sputtered) - MLF-5 (fused coating)

MLF-5 is sodium silicate bonded MoS 2 - graphite - gold. This combination

has been used by MTI and is found satisfactory at 540°C (IO00°F) for short

test periods. It was felt that MoS 2 will oxidize to MoO 3 after long term

exposure at high temperature. However it was selected as a base llne.

In the previous combinations, Cr3C 2 was plasma sprayed. Here Cr3C 2 was

intended to be sputtered. This may give better adherence.

19. Tribaloy 800 (plasma sprayed) - Cr20 3 (sputtered)

Tribaloy 800 and Cr203 are good at high temperatures.

was considered.

This new combination

20. Cr203 (sputtered) - Silver (sputtered)

It is believed that low shear strength silver coating may be beneficial at

high temperatures. This new combination was considered.

21. Electrolyzed A-286 - Silver (sputtered)

This new combination was considered.

22. Silicon Nitride (sputtered) - Silicon Nitride (sputtered)

Silicon Nitride has hexagonal crystaline structure and good sliding charac-

teristics.

23. AI20 3 (sputtered)- TiC (sputtered)

This new combination was considered.

24. Linde Cr3C 2 with Nichrome (detonation gun process) AFSL-28 (fused coating)

AFSL-28 consists of BaF2/CaF 2 eutectic and A12 (PO4) 3. MTI has used this

coating in past at 650°C (1200°F). This combination was further investigated.
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25. AI20 3 (plasma sprayed) - AFSL-28 (fused coating)

AI20 3 is an extremely hard meterial and has been used in rigid bearing

application at high temperatures. This new combination was considered.

26. Ni-Co (electroplated) - B4C (sputtered)

Ni-Co (electroplated) was used by Koepsel [12].

27. Ni-Co (electroplated) - TiB 2 (sputtered)

Titanium diboride has hexagonal crystalline _tructure and was considered a good

sliding candidate.

28. Nitrided A-286 - Cr20 3 (sputtered)

Cr20 3 has hexagonal crystalline structure.

place over 540°C (1000°F).

The oxidation of nitride may take

29. Nitrided A-286 - Cr3C 2 (sputtered)

Cr3C 2 was tried against nitrided A-286.

30. NASA PS-100 (plasma sprayed) - Ag (sputtered)

NASA PS-IO0 contains nichrome, dispersed glass and CaF 2 and has no silver as

in PS i01. During sliding at high interface temperatures, PS-100 may interact

with silver and produce properties the same as or better than those of PS I01.

31. Silicon Carbide suspended in electroless nickel (NYE-CARB) - Silicon

Nitride (sputtered)

Coating of Silicon Carbide suspended in electroless nickel is applied by

Electro-Coating, Inc. Benton Harbor, Michigan. This coating was tried in

bearing applications. The shaft coating is limited to 540=C (1000°F).

32. Cd0 and graphite with a binder (fused coating) -

Cd0 and _raphite a binder (fused coating)

Peterson and Johnson (Reference 8) found that CdO and graphite mixture has

low coefficient of friction in the entire temperature range up to 540°C

(IO00°F). The mlx=ure cannot be plasma sprayed as CdO and graphite might
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reduce at high temperatures. Cd0 and graphite was tried fused to the

surface with a binder. CdO has cubic structure.

33. Tribaloy 800 (plasma sprayed) - Kaman DES (chemically adherent coating)

Kaman DES is a proprietary coating put on by Kaman Sciences Corp., Colorado

Springs. This coating has shown promise in some tests (Reference 12).

34. Kaman DES - Kaman DES

A combination of thin Cr203 coating vs. itself was tried.

Late Entries of Promisin s Candidate Materials

In the program, provisions were made to introduce new promising coating

materials as the work proceeded. Constant effort was made to look into all

high temperature and wear applications to find coatings which should be

considered. Some promising coatings were identified through the static oven

testing.

Calcium zirconate (calcium oxide - 31% and zirconium oxide-balance) and

magnesium zirconate (magnesium oxide - 24% and zirconium oxide-balance) are

used in aircraft engine combustors. These coatings are put on by plasma

spraying and have performed well in relative sliding at high temperatures.

These coatings look promising for this program.

Norton Abrasive has its Rokide series of coatings for high temperature

application. These coatings are put on by thermo spraying. The coatings so

obtained are more porous than those obtained by plasma spraying or detonation

gun. The porosity of the coatings by thermo spraying is typically 2 percent.

Some porosity provides room for expansion and contraction of the coating

during thermal cycling. As a result, these coatings should have better

thermal shock properties. However, in gas bearing applications, porosity or

higher surface roughness (desired roughness typically 6 rms) is detrimental

since the air film thickness in the bearing at high speeds may be as low as

2.5 um (I00 u in). Any porosity would reduce the effective film thickness

(gap between peaks on the shaft and the surface of the foil) and the peaks

may start rubbing. Therefore, it is conjectured that the porosity is desirable

from thermal shock point of view but may increase the bearing surface wear.
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However,a compromisemayalwaysbe reached. It is hopedthat Rokidecoating

mayprovide sucha compromise. RokideC (Cr203) coating is mostwear re-
sistant and wasselected for oven tests.

UnionCarbide has recently developeda newcobalt base alloy coating desig-
nated as L 103. The coating consists of 51 percent Co, 20 percent Cr, 19.5

percent W, 5 percent Ni, 4 percent Cr203. According to metallurgists at

Union Carbide, this coating has excellent wear resistance up to 980°C

(1800°F) and is believed to be better than other coatings such as LC I

(Cr3C2). The coating is put on by the detonation gun process. The past

experience has shown that cobalt base alloys have better anti-galling prop-

erties. Therefore, L 103 coating may be superior to other Union Carbide

coatings in our application.

An overcoating of an oxidation resistant, softer material may provide some

lubrication, at least in the run-in period. The overcoatings of sputtered

silver and gold were evaluated on corroslon-resistant undercoatings; TiC

(sputtered) and Cr20 3 (sputtered). I= was hoped that the solid lubricant,

silver and gold, would provide backup in case previously selected soft

lubricants were not completely effective.

MATERIALS PROCUREMENT

Most of the coatings were applied by outside vendors. Only Cd0 and Graphite

coating (HL 800)* was developed and put on at MTI (for details see Appendix C).

The actual vendors and =heir specifications for the coatings put on shaft and

foll coupons are listed in Tables 11.6 and 11.7.

Foil specimens had to be pretreated before Kaman DES and HL-800 coatings could

be put on with adequate bond strength. The surfaces were electro-etched to

remove the oxide layer formed during heat treatment and to roughen the surfaces

somewhat (for details see Bhushan [14]).

* MTI CdO and Graphite with a binder coating has been given an identification
number HL-800, where HL indicates hydresil TM lubricant and 800 indicates

maximum use temperature.
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TABLE II.6

VENDORS AND SPECIFICATIONS OF COATINGS ON TEST COUPONS

S. No. Coating Vendor Base SJe¢iflcaClonm

i. 3&C (sputtered)

3.

TiC (s_u==ered)

5i3N & {s_ut:ered)

CrjC 2 (sputtered)

.Millis Research Corp.,

Milll$, }_ss,

.Millls Research Cor_.,

.M/llis, MasS.

>!llis Research Corg.,

.Willis, .Mass.

_llls Research Corp.,

Journal and

Foil

Journal and

Foll

•_£11is Research Cor_.,

>_llis, .Mass.

Journal and

Foll

Journal and

Foll

5000A chick; RF _puttered and wa=er

cooled substrata.

30OOA thick; RF s_uttsrad and water

cooled substrata.

5000A thick; RF s_uttsrsd and water

cooled substrate.

$O00A _hlck; RF sputtered and water

COOled substrata.

_, Ag (sput:ere_) M!llls .Research Cor_., Foil 5000A _hick; .RF sputtered and water

Ylillis, Mass. cooled substrata.

_. Crj03 (s_utter_d) .Willis Research Cor_., Journal and 5000A thick; RF spu==ared and water
:4111is, ,Mass. Foil cooled substrata.

7. Ai.O 3 Journal and
_oil

[4C {sputtered)

5000A tnlck; RF eput%ersd and wa_er

cooled substrata.

_. _-_i£is Research Cot;., Journal and 5000A thick; KF sputtered and water

._tillis, Y_SS. Foil cooled substrata.

9. CrB 2 (s_u_ered) HohJum Placing and _mnuf. Journal and 5000A thick; RF _.z_e 3GO ws_te; Argon
Dayton, Ohio Foil _ressure, 7.6 _cr&ns; subs:rate :amp.

220"C; Tar_et-Subs:ra:e distance=&5 :m

19. Ti32 {sputzerld_ _ohman Plating and }_nuf. Foil 663OA thltk; RF t79e and heated substrata;

Dayton, Ohio TI=68.BZ, B-31.05%, 0_).17%, NeO.I%,

C-.04%, _o.005%

il. _;ABA P$ i00 Hohman Plating and Manuf. Journal 0.15-0.2 _ (6-_ :Lils) zhlzk; iB_ NI-Cr,

{Plasma _praye_) Day:on, Ohio 35% CaP 2 and _0% glass.

12. Ni-Cr Bonded CrB_ Coating 5_:s:sma and Tech. Journal 0.15-0.Jmm _hick; !5% Ni-Cr (_0%

(F!as_a Sprayed)" No. Saby_on, N.Y. Ni-20:Cr} and 7_: CrB_ (70.I0_ Cr,

29.37%, C=.0&Z, 0-0.!_, N-.0&_,-525 =ashY.

i_. Ni-Cr 3onoed 'CrjO ] Cos:ins _[,S_emS and Tech. Journal O.15-O.Zm_ :hi:k; 25%Ni-Cr and T5%

No. Babylon, N,Y. Cry03 {98% _u=s an_ -AS-iS _icr:ns).

l-. }li-C: 5cnie_ Cr]C l Cos:ins STreams And Tecn. Journal 9.iB-O.lmm :hick; 25% }:i-Cr ¢_5_L0 =i:r:ns)

No. Baoylon, N.Y. and 75: CrjC 2 (99% Pure and --5_5 =Acron_

15. AIlO _ ,Plasma Ccacang &ys=ams end Tech. Journal _.iB-0.2_um :hi_i; _8% Pure ALl05

&prayed) No. BaDylon, N.Y. _-25-3 micron_
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TABLE II.6 (CONT'D)

VENDORS AND SPECIFICATIONS OF COATING:

S, No. Coat!ha Vendor Base

lb. XASA PS 101 (Plasma .NASA, Cleveland Journal

Sprayed) Mi-Alum=Ls-

lde undercoat

17. .NASA ?$ i06 (Plasma NASA, Clevsiand Journal

sprayed) Ni-Alumln-

lie u_dercoat

18. Trlbalo7 $00 Quancom Znc. Journal

Ni-.4.1umlnide WalllnS_ord, Conn.

Usdercoa_ (Plasma

Sprayed)

19. Ni-Cr Sonded CrBC 2 Lands Olv., Union Carbide Journal

(Detonation Gun) Co N , North Maven

20. :_F-5 .w-ldwesc Research Inst. Foil

:<ansas City, Mm.

21. A2SL-2$ Midwest Research _os=. Foll

(Fused Coa_in$) Kansas City, Mm.

22. NI-Co .Metal Surfaces InC. Journal

(_lectroplaced} Bell Gardens, Cal.

23. Ni:r!ded .4.2S6 Lindbar_ _eat Trea_in_ Journal

and Tu_f_r!ded Rochester, N.Y.

A/S6

2&. Borided .%/$6 Llndber_ Meat Treatin_ ]ournal

SOaCOn, MASS.

25. _(aman DES Kaman Sciences Corp. Journal and

(chemical adher- Colorado Sprln_ Foil

ent :oat!=_)

2_. Silicone Carbide Sleccrocoatlag _=c. Journal

Suepended in Benton _arbor, M_ch!_an

Elsc:roless Nickel

!7. _leccrol_+'zad A/96 Klec:roiTrin_ Corp. I Journal

ON TEST COUPONS

Specifications

50-75um (2-Bm/la) undercoat, Ni-Aluminlde;

150-200_m topcoat, 30_ A_, 30X _i-Cr,

25: CaF 2 and 15_ Sodium free _lass

50-75um :hick undercoat: Ni-.%lumlnlde

lS0-200um topcoat; 35Z NI-Cr, 30_ CaF,

and ]5_ A_.

50-75um _hlck undercoat, iB0 NS, (&-5.5_

AI, !.5_ -_ax. _mpuritleS and Re_alnder

Ni); 150-200 _m top coat T-_O0 (32:Co,

25Z:"1o, I7_Cr and 3ZSi)

[50-ZOO am :hick; _0_ NI-C: (30_ Ni-10_ Cr)

and _OZ Cr]C !.

12-I_ _m _0.5-0.7 _ils) _h:ck; _o3,,

_raphi:a, 8old, sodium si!llca_e a_d _a_er

12-18 :m _h£ck; calcium fluoride, barium

fluoride and aluminum _hos_ha=a.

25 +m _l mil) _hick; Proprie_1_: Process

C60 :o 30: Co_.

Ni_rldln_-iz_ersion ac 56_"C in _._l:sn

_al_ for 36 hours and furnace fool

Tuff=ridln_-i=meraion a_ 5_'_'C for 2.5

hours and _q.

Surface Core :onver:ed :o :rB 2 co_@oun_.

Foil- (i.]-2.5.m) (SO to 130 . in.)

Journal- 7.J-!15 .m (300 :o _0 I) . in.)

Frop__e_a_r _rocess ¢_r£:_rii7 CrlOB).

_t!!¢one Carbide 2articles _7 "tOl'_

10-i5 _IcrDns in a _a:rix of alloy.

90-95: Ni, 7-50% Phosphorous

_-13 ._ :hick; ProOf!scar7 Process,

chro.nium silo[, :oatln_.

13. _L-_00 MT: Journal and 25 ._ (i a_l) th¢:_; TiC, _racni:s, +oli_

Foil sill/cars, we:s: in_ _e::tn_ i_ent.
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III. STATIC MATERIAL SCREENING TESTS

SAMPLE PREPARATIONS

The selected specimens were in the form of small foil samples approximately

50 mm x 50 mm (2" X 2") square and i00 _m (0.004 in.) thick and small journal

samples approximately 50 mm x 50 mm (2" x 2") square and 750 um (0.030 in.)

thick each with the appropriate coatings as described in the previous chapter.

Thin sheet coupons of journal were selected so that weight change could be

detected more accurately. Two sets of each coating were prepared. One

set was to go through the oven test and the other set was retained for com-

parisons. The photographs of microstructures of A286 and Inco X-750 sub-

strafes before and after oven tests were taken for reference (Figure III.i).

All pertinent manufacturing data, quality control and pre-test examination

results were recorded.

OVEN SCREENING TESTS

Static screening tests were conducted on material coating combinations suit-

able for operation over two temperature ranges:

I. Room temperature to 540=C (1000@F)

2. Room temperature to 650°C (1200°F)

The test consisted of exposure of material samples in an oven (oxidizing

environment) for 300 hours at the maximum service temperature (either at

540°C or 650°C) and i0 temperature cycles from room temperature to the

maximum service temperature. The specimens were cooled from maximum service

temperature to close to room temperature in about 20 minutes.

SPECIMEN ANALYSIS

The specimens were subjected to standard physical and metallurgical surface

examinations prior to and after test for further screening. The foil

coupons were tested under flex bending. All of the shaft and foil coupons

went through a surface adhesion tape test, and a scratch test under micro-

scope examination. Selected specimens were examined using scanning electron

microscope and electron diffraction techniques. Superficial Rockwell

hardness tests were performed on the thicker coatings. The weight and the
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AS RECEIVED
(ELECTROETCHED)

¢

INCONEL X-750

HEAT TREATED
(ACID ETCHED)

A- 286

50Fro

HEAT TREATED
(ACID ETCHED)

Fig. III.i Microstructures of Substrate Cross Sections Perpendicular
to Rolling Direction
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thickness of the coupons, before and after the oven tests, were recorded

(See Appendix D for results). The coupons before and after oven tests

were mounted side by side for visual comparisons. Photographs are shown

in Figures III.2 to III.7.

Flex Bending Test

The foils in the bearing go through flexing during operation. It was

suspected that some of the hard ceramic coatings might crack during flexing.

The coated coupons were flexed (140 um max. at 30 cps) for two hours and

then examined under the microscope. None of the coatings showed any effect

at all from the flexing.

]
|
!

|
I

|
II

!

Tape Test

A surface adhesion test was carried out on the coatings to get a qualitative

measure of the adhesion between the coating and the subs=rate. Scotch R brand

magic transparent tape No. 810 was pressed on the coating surface by finger

load and was pulled by hand. In some cases coatings which had gone through

the oven test showed loss ef adhesion in the tape test.

Scratch Test

A scriber was used to make a scratch on the coatings before and after oven

test, while looking through an optical microscope. The reason for this

test was twofold. The test would give a semi-quantitative comparison between

the hardness of the coating before and after the oven test, and any significant

softening of the coating in extended thermal exposure could be detected.

Furthermore, =he examination of the scratch would show if =he coating was

ductile or brittle. If small branch cracks develop on =he sides of the

scratch, it is believed =hat the coating may be brittle and vice versa.

Optical Microscope Examination

A general microscope examination was carried out to study any change in surface

texture. Microscope examination was carried out to detect, in sputtered

coatings, if any coating was left after the oven test.
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I_C (S_tt_ed)

BEFORE OVEN AFTER OVEN

Ni-_" Bonded Cr_ 2
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BEFORE OVEN AFTER OVEN BEFORE OVEN AFTER OVEN

Ni-Cr Bonded Cr203 Borided A-2B6

( Plasrr.I Swayed)

BEFORE OVEN AFTER OVEN BEFORE OVEN AFTER OVEN

Tribaioy 800 (Plasma Spayed) _ Cr3C2lPtamna Sprayed)

BEFORE OVEN AFTER OVEN

Linde C_3C 2 (Detonation Gun)

BEFORE OVEN AFTER OVEN

_Z03 (Sp.t_ed)

A-286 COUPONS (650°C)

Fig. 111.2 Photograph of Coatings Before and After Oven Test
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Fig. 111.3 Photograph of Coatings Before and After Oven Test
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photograph of Coatings Before and After Oven Test
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Fig. 111.5 Photograph of Coatings Before and After Oven Test
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Fig. 111.7 Photograph of Coat£ngs Before and After Oven Test
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Superficial Hardness Test

Plasma sprayed coatings were 150-250 _m (6-10 mils) thick. Superficial

Rockwell hardness tests with a diamond indenter and the lightest load

(15 N) were made on these coatings. As expected, no change in the hardness

could be detected in the coupons after they had gone through oven test.

The diffused coupons, nitrided, tufftrided, and borided were tested with a

file. The hardness of a file is typically Rc 60 and the hardness of the

diffused zone on the substrate (less than 500 _m deep) is about Rc 70.

If the file slipped, as if gliding on glass, it implied that the substrate was

harder than Rc 60, for example that a diffused zone was still there. If the file

made a scratch on the substrata, it implied that the substrate was softer

than the file, i.e. the diffused zone either had softened or had become brittle

during thermal exposure and cycling, and been lost. This test was found to

be quite meaningful.

Weisht Gain

Records were made of the weight and the thickness of the coupons before and

after the oven test. It was found that most of the coupons gained weight and

that this was not representative of a good quality coating.

Metallur$ical Examination of Selected Journal and Foil Coupons after Oven Test

Surface morphology of the coatings on journal and foil coupons was examined

in the Scanning Electron Microscope (SEM). The X-Ray Energy Dispersive

Analyzer (X-REDA) hooked to SEM was utilized to determine the elemental com-

position of specific particles or structures on the samples. In the case of

sputtered coatings, X-REDA analysis gave the composition of the coating and

the substrate since the thickness of the coating was only 5000°A (20 _ in.).

By knowing the composition of the substrate, the composition of the coating can

be obtained qualitatively. The analysis is ineffective in detecting elements

with atomic number less than that of Na (II). Analyses by Reflection Electron

Diffraction (ED) and X-ray diffraction have been made to determine the chemical

compounds in the coatings. The analyses are limited to crystalline structures.

The base materials for foil and journal were Inconel X-750 and A-286. Some

of the promising candidate coatings for start-stop tests were selected for
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metallurgical examinations. As the composition and morphologyof sputtered
coatings maydependvery muchon sputtering parameters, an examinationof
the sputtered coatings wasdeemednecessary; they were primarily selected
for metallurgical examination. Theresults of the study are presented in

AppendixD. Theh_gh!ights and general observations are reviewed in Table
III.i.

DISCUSSION OF THE RESULTS

The results of the 300-hour oven tests and the thermal cycle tests were very

encouraging since several promising candidate materials survived these screen-

ing evaluations with little or no deterioration (Appendix D). Table 111.2 shows

the coating materials which survived the screening tests. Six coatings on the

shaft showed practically no effect from the thermal exposure nor from the thermal

cycling. They were given first priority for the start-stop bearing tests.

Another five coatings were borderline and might have been selected in a large

program. They were given second priority. Five coatings on the foil and an

uncoated foil were found to be promising and given the first priority. Three

coatings were found to be marginal. It is felt that further work should be

done in developing the coatings, including the ones which looked marginal. A

parametric study of the sputtering variables in the lower priority specimens

could lead to a coating with desirable properties. A technique for coating

Cd0 and graphite on foils has been developed at MTI. Although it seems that

some of the graphite oxidizes at high temperature, it was selected to see

if it could be used at temperatures slightly lower than 540°C (1000°F).

The number of candidate materials appears to be rather unwieldy, particularly

if it is proposed that every possible foil and Journal combination be evaluated.

In addition, only one solid lubricant coating, the NASA PS-106 material survived

the 650°C (1200°F) furnace and thermal cycle tests. Silver, which was one of

the candidate coatings that was selected to be a high temperature, low shear

strength solid film showed very poor adherence on the A-286 stainless steel

substrate. In retrospect, this was a poor choice for the substrate since it

had been found previously that silver platings are not good oxidation barriers.

Any oxidation of the substrate will cause the silver to spall. Thus, this

test result should not be used to rule out silver because it only shows that

silver on A-286 steel is unsuitable.
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lo

First Priority

TABLE III.2

Coating Materials For Foils From Oven Screening Tests

l°

2.

3.

4.

5.

6.

Second Priority

lo

2.

3.

TiC (sputtered)

Cr20 3 (sputtered)

Si3N 4 (sputtered)

Cd0 + Graphite (Fused Coating), 540°C (IO00°F)

Kaman DES (chemically adherent coating)

Uncoated Foil

B4C (sputtered)

CrB 2 (sputtered)

A£20 3 (sputtered)

"T

)
I
)

)

I
ii

II. Coating Materials For Shaft From Oven Screening Tests

First Priority

l°

2.

3.

4.

5.

6.

Second Priority

io

2.

3.

4.

5.

Ni-Cr Bonded CrB 2 (Plasma Sprayed)

Tribaloy 800 (Plasma Sprayed)
Ni-Aluminide Undercoat

Linde Cr3C 2 with Ni-Cr binder

(Plasma Sprayed)

Cr20 3 (sputtered)

NASA PS 106 (Plasma Sprayed)

with Ni-Aluminide Undercoat

Kaman DES (chemically adherent coating)

TiC (sputtered)

B4C (sputtered)

CrB 2 (sputtered)

Cd0 + Graphite (Fused coating), 540°C (1009°F)

A£203 (sputtered)

III. Recommendations of Coating Materials For Shaft From Late Entries

In The Oven Tests (Future Program).

i. LI03 (Detonation Gun)

2. Calcium Zirconate (Plasma Sprayed)

Ni-Aluminide Undercoat

3. Magnesium Zirconate (Plasma Sprayed)

Ni-Aiuminide Undercoat
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RECOMMENDED COATING COMBINATIONS FOR PARTIAL ARC BEARING START-STOP TESTS

Referring to Table 111.2, six coatings were given first priority for use on

the journal surfaces and five coatings (plus one uncoated foil) were selected

as the most promis%ng for the foils. The materials with first priorities were

selected for the program. In Table 111.3, all of these materials are listed

together with crystal structure, hardness data and a list of the most stable

oxides which would be formed at high temperature.

With the exception of TiC, all of these materials either have a hexagonal

structure or contain compounds having this structure. This satisfies one of

the criteria which was listed previously.

With the exception of the NASA PS 106 (35% Nichrome, 30% CaF 2 and 35% silver)

and HL-800 (3 parts graphite and i part Cd0 with a binder) coatings, all of

these materials are hard and are generally classified as wear resistant. This

satisfies another criterion for material selection.

Finally, three of these materials, Tribaloy 800, TiC and Si3N 4, form definite

and beneficial oxide films in the temperature range of interest for this

application. The Tribaloy 800 will develop complex oxides which are known

to be beneficial in preventing surface damage during sliding. Both the TiC

and the Si3N 4 will form thin protective oxide films (Ti02 and Si02) which

protect the substrate from further oxidations - unless they are disrupted by

the sliding process. While neither Ti02 nor Si02 are particularly effective

by themselves in preventing wear or surface damage, both can form complex

oxides by reaction with oxide films on the opposing surface and thus can

produce compounds with lower melting points. For example, if a CrB 2 coating

was applied to the shaft and a TiC coating was applied to the foil, preoxidation

of these coatings would produce a thin layer of Cr20 3 + B20 3 on the shaft and

a surface layer of Ti02 on the TiC coated foil. There is some evidence to

indicate that this particular combination of oxides would form a softer glass

layer which might protect the s ubstrate coatings from damage.

Table 111.4 shows the material combinations recommended for the partial arc

bearing start-stop tests with criteria for selection. Table 111.5 shows the

selected combinations in a matrix form.
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TABLE Ill. 3

CRYSTAL STRUCTURE t VICKERS HARDNESS AND OXIDATION PRODUCTS

OF COATING MATERIALS SELECTED FOR START-STOP TESTS

COMPOUND

CrB 2 +

25% Ni-Cr

Tribaloy 800

52Co-28Mo-17Cr-

3Si

Cr3C 2

Cr203

Kaman DES

(Cr203 +

proprietary)

TiC

Si3N 4

CdO +

graphite

MOST STABLE

STRUCTURE

CrB 2 is

hexagonal

Laves phase

is hexagonal

Cr3C 2- coating

also contains

hexagonal

Hexagonal

VICKERS

HARDNESS(a)

CRB2--2150

(I00 gram)

Laves phase

-iI00.

Bulk 56-60Rc

Cr3C 2 2650

(50 grams)

_9 Moh scale

SEE Cr203

Cubic

Hexagonal

CdO-cubic

Graphite-

hexagonal

-3200

(i00 gram)

~1700-2200

(i00 gram)

Soft Coating

OXIDATION

PRODUCTS

Cr203

B203

Ni0

CoO

MoO 3

Cr203

Si02

Cr203

Fully

oxidized

material

TiO 2

SiO 2

Not

Applicalbe

(a) Actual values very dependent on method of preparation, porosity and purity.
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TABLE III. 4

COATING COMBINATIONS WITH CRITERIA FOR SELECTION FOR START-STOP TESTS

FOIL JOURNAL

i. TiC (sp., preox.) UrB2(P.S., preox.)

2. TiC (sp., preox.) Kaman DES

3. Cr203 (sp.) Cr203 (sp.)

4. Cr203 (sp.) Kaman DES

5. Cr20 3 (sp.) Tribaloy 800
(P.S.)

6. Kaman DES Kaman DES

7. Kaman DES Cr203 (sp.)

8. CdO-Graphite Linde Cr3C 2 (D.G.)

(Fused)

9. Si3N 4 (sp., preox.) CrB2(P.S., preox.)

I0. Uncoated NASA PS-106 (P.S.)

ii. CdO-Graphite NASA PS-I06 (P.S.)

(Fused)

12. Kaman DES NASA PS-I06 (P.S.)

13. Cd0-Graphite Cr20 3 (sp.)
(Fused)

14. TiC (sp., preox.)

15. TiC (sp., preox.)

16. Si3N 4 (sp., preox.)

17. Kaman DES

18. Cr203 (sp.)

Tribaloy 800 (P.S.)

Cr203 (sp.)

Tribaloy 800 (P.S.)

Tribaloy 800 (P.S.)

CrB 2 (P.S., preox.)

CRITERIA FOR SELECTION

Possible eutectlc oxide formation

Possible oxide interaction

Crystal structure, past experience

Same as above

Also to determine if Kaman DES

behaves like straight Cr203

Crystal structure. Also beneficial

effect of oxide film on Tribaloy 800

To see how this compares with 3.

To compare with 4.

Effectiveness of solid film lubricant

coating against plasma sprayed hard

coating

Possible oxide interaction. Crystal

structure

Effectiveness of solid film lubricant

Effectiveness of soft against soft

coating

Effectiveness of Fluoride (soft) coating

against Kaman DES (hard) coating

Effectiveness of solid film lubricant

coating against sputtered hard coating

(to compare with 8)

Possible oxide interaction

To compare with 2

Possible oxide interaction

To compare with 5

Possible oxide interaction (to compare

with 3, 4, 6 and 7)

sp. - sputtered P.S. - Plasma Sprayed D.G. - Detonation Gun
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TABLE III.5

SELECTED COATING COMBINATIONS FOR ST._RT-STOP TESTS

_Jou_n__

Foil__

A I riC(sp.)

Cr203(sP.)

Kaman DES

CdO-Graphite

(F.C.)

E Si3N4(sP.)

Uncoated
F

Foil

CrB 2

(P.S.)

©

®

®

Tribaloy

800(P.S.)

®

®

©

®

Linde

Cr3C 2

(D.C.)

Cr203

(sp.)

®

@

©

NASA

PS-I06

(P.S.)

©

@

Kaman

DES

©

©

@

sp° - sputtered

P.S. - Plasma Sprayed

D.G. - Detonation Gun

F.C. - Fused Coating

ORIGINAL PAGE 18

OF POOR QUAL1T_,

46



Since Cr20 3 has given good performance in rigid gas bearings, more combinations

have been selected with Cr203 coating.

The thickness of the finished plasma sprayed coating was selected to be 65 to

90 um (2.5 to 3.5 mils) on one side. The plasma sprayed coatings requiring

undercoats were 140 to 165 _m (5.5 to 6.5 mils) thick (50 to 75 _m thick

undercoat inclusive). An additional buildup of I00 to 125 um (4-5 mils) on

one side was required for proper finishing of the coating. The thickness of

the sputtered coatings was selected to be about 5000 A (20 _ in). Kaman DES

coatings were about 1.3 - 2.5 um (0.05 to 0.i mil) thick on the foil and

8-13 um (0.3 to 0.5 mil) thick on the journal. The HL-800 coating was sprayed

about 25 um (i mil) thick and burnished to about 8-10 um (0.3 - 0.4 mil) thick.
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IV. TEST FACILITY AND INSTRUMENTATION

TEST RIG DESCRIPTION

An existing MTI owned test rig, which was used in Part I of this program,

was further modified to meet the start-stop requirements of the program.

The test rig is shown in Figures IV.I and IV.2. Figure IV.3 shows the

complete test facility.

The support shaft was made of A-286 to match the material of the test

journals and supported on two preloaded angular contact ball bearings. The

shaft incorporated an integral heat dam consisting of a 28.4 _=n (1.12 inch)

long section 1.6 _ (.063 inch) thick which extended into the hot zone. The

test journal was a light interference fit onto the shaft. The pilot diameter

for the interface was coated with a 5-10 _m (.0002-.0004 inch) thick layer of

Nickel-Chromium applied by the Electrolizing Company. The test journal was

held in place with a tie bolt, also made of A-286, which was threaded into the

shaft. Heat baffles mounted to the support housing interrupted the flow of

heat out of the hot zone. In addition a 6.4 mm (.250 inch) thick Mycalex 500

disk acted as an insulator between the heat baffles and the support housing.

Oil for lubricating and cooling the support ball bearings was supplied through

two oil jets 180 ° apart at each bearing. A water cooled heat exchanger in

the oll supply loop removed heat from the oil. A water jacket in the support

housing assisted in removing heat from the test end support ball bearing.

A double labyrinth seal with pressurized air supplied between the seals pre-

vented the oll from traveling down the test shaft into the test bearing area.

The test spindle was driven by a i hp and 3450 RPM electric motor. The motor

was attached to the main vertical support plate and connected to the spindle

with a flat drive belt. A pulley ratio of 4:1 was used to obtain a 13,800 RPM

spindle speed. The on-off cycle rate was controlled by adjustable timers.

An impulse counter was used to count each cycle.
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A heater box consisting of eight 500-watt quartz lamps was used to heat

the test chamber to the required temperature. The test temperature was

manually controlled by use of variacs to vary the voltage to the quartz

lamps.

MEASUREMENTS AND INSTRUMENTATION

Rotor Speed

Rotational speed was measured by anMTl Fotonic Sensor TM fibre optic probe

which responds to the once per revolution passing of a dark band painted

on the test shaft. The output of the Fotonic Sensor was displayed on one

channel of a two channel vlslcorder.

Test Temperature

The test bearing housing temperature was monitored using four (4) T}_e K,

Chromel-Alumel thermocouples. The thermocouples were mounted on the out-

side of the housing 90 ° apart, then covered with a heat shield to prevent

direct radiation from the quartz lamps. These thermocouples were used to

monitor the test temperature. It had been determined during initial rig

checkout that the test bearing temperature was essentially the same as

that recorded on the bearing housing after the housing had been allowed to

soak at the test temperature for 15 minutes. The output of the thermocouples

were recorded on a Honeywell multlpolnt chart recorder.

Frictional Dra_

The mechanical arrangement used to measure the frictional drag of the test

bearing is shown in Figure IV.l. The floating foll bearing housing is re-

strained from rotation by a torque arm connected to the test bearing housing,

and a flexure in the vertical plane acting through the bearing centerllne.

Bearing frictional drag causes deflection of the flexure which is measured

by a capacitance proximity probe. The range of the capacitance probe used

in the system was 0.254 mm (.010 inch). The output of the capacitance probe

was recorded on one channel of a visicorder.
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Test Bearin$ Load

Test bearing loading was accomplished by applying calibrated dead weights

to the test bearing housing.

TEST BEARING AND TEST JOURNAL

The test bearing selected was a partial arc 38.1 mm (1.5 inch) diameter

Hydresil TM Journal Bearing. The test bearing and test journal are shown

in Figure IV.4. The bearing diameter and mechanical design were based on the

bearing used in Part I of this program. The bearing consists of a bump foil

and a top or smooth foil. The smooth foil receives the coating to be evaluated.

The two foils are individually attached to a "key" by spot welding and are

separated by a spacer block. The key then fits into a slot in the floating

bearing housing and is secured in place by tapered pins. This method of

attaching the foils to the housing is not typical for hydresil applications,

but did greatly facilitate changing test specimens while having the fewest

number of test components.

To properly evaluate each coating combination, a newly coated foil was run

against a clean journal surface which had not been tested against other foil

coatings. To reduce the number of test journals required, a bearing of

19.05 mm (.75 inch) wide was used, which allowed the 44.5 mm (1.75 inch) wide

journal surface to be used with two (2) foil coatings. The test bearing

housing was indexed axially along the test sleeve to locate the test bearing

over the appropriate section of the test journal.

A partial arc bearing was used rather than a complete bearing to simplify

bearing fabrication and testing. The test bearing had a pad arc of approx-

imately 186 ° Through testing, it was determined that a pad of less than

180 ° resulted in rough bearing operation. The test bearing had one bump

more than one half the total number of bumps in a complete circular bearing,

which resulted in the 186 ° pad arc. Rotation of the journal was from the

loose end into the weld. A complete L/D = I, 360 ° pad bearing was used to

evaluate the most promising coating combination identified from the partial

arc testing.
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Final machining of the journals was completed after the plasma sprayed coatings

were applied and before the fused and sputtered coatings were applied. The

journals were ground to be 5 pm (.0002 inch) round and 2.5 _m (.0001 inch)

straight over the test area.

Typical static and dynamic runou_s of the test journal surface after instal-

lation on the shaft were approximately 7.5 _m (.0003 inch).
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V. MATERIAL START-STOP TEST RESULTS AND DISCUSSIONS

TESTING _ND SCREENING TECHNIQUE

The start-stop tests were conducted with the facilities described in the

previous chapter with one-half the number of test cycles at a test chamber

temperature of either 540°C (1000°F) or 650°C (1200°F), and the other one-

half at room temperature. The test format for the earlier batch of test

specimens was as follows:

i. Five hundred cycles* at room temperature; 4 seconds on and 16

seconds off,

2. Five hundred cycles, at maximum temperature; 16 seconds on and

4 seconds off,

3. Repeat Step i.

4. Repea= Step 2.

Later in the program, it was found beneficial to run the tests in reverse

order, i.e., to run the tests at maximum temperature first. (This concept

is discussed later in this report.)

During tests, the following test conditions were monitored and recorded:

• Serialization of specimens to include: materials, vendors, processing,

and finishing data.

• Visual inspection of coatings before and after each 500 cycle period.

• Static breakaway torque of the bearing at the start and conclusion of

each 500 cycles.

• Maximum starting torque.

• Ambient temperature.

• Maximum speed of spindle.

• Static and dynamic runout of test spindle.

• Unit loading.

m

|

!

!

]

* One cycle consists of one start and one stop.
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Static breakaway friction torque was measured at the beginning of the test and

after every 500 cycles of testing. After each i00 test cycles, a recorded trace

of dynamic friction torque as a function of rotating speed during acceleration

and deceleration was obtained for the purpose of estimating the general con-

dition of the rubbing surfaces. Photographs of the journal and foil rubbing

surfaces were taken periodically. The acceleration and deceleration of the

drive motor was too fast to estimate the llft-off and touch-down speeds.

In the actual bearing application, the bearings are continuously flushed with

high pressure air which should remove almost instantaneously any wear debris

being formed at the sliding interface. To crudely simulate this in the start-

stop tests, after every 500 cycles, the bearing and journal surfaces were

flushed with air to remove any wear debris.

Initially, partial arc bearings of all the test combinations selected from

static oven screening tests were made and tested to the maximum of 2000

start-stop cycles at approximately 14 kPa(2 psi) based on projected area.

This was followed by one partial arc bearing start-stop test at increased

loading with the most promising material combination, the unit projected

specimen load in this test being 35 kPa (5 psi). Finally, a start-stop test

of the most promising material combination resulting from partial arc tests

was made using a complete foil bearing.

The following criteria were used to screen the start-stop test results:

• Static and dynamic breakaway friction torque at the start and

conclusion of each 500 cycles.

• Visual inspection of the journal and the foil before and after each

500 cycles.

• Microscopic examination of the journal and the foil.

If the friction torque increased or the surfaces showed significant loss of

coating or wear, the bearing was considered failed and the testing was

terminated. Certain subjective judgment was required. Photographs of the

bearing surfaces after the test and sometimes during the test were taken.
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PARTIAL ARC BEARING TEST RESULTS AT 14 kPa (2 psi) LOADING

As explained in Section IV, foll bearing pads with a width of 19 mm (3/4")

and a pad arc of 186 ° were made. This made it possible to conduct two

separate tests on each journal (38 mm, bearing width) using parallel contact

tracks. The results of the coating combinations tested are reported in

Table V.I. The table shows the dynamic and static breakaway torques, surface

roughnesses of the Journal before and after tests, and comments on the surface

appearance of the Journal and bearing after test. Test No. i consisted of

Linde Cr3C 2 on the test journal and Hohman M-1284 (MoS 2 dry film) on the

foil. This test was used as a baseline reference in evaluating rig per-

formance and for the selected coating combinations. At the end of the 2000

start-stop cycle sequence which included: 500 cycles at room temperature;

500 cycles at 290°C (550°F); 500 cycles at room temperature; and 500 cycles

at 2900C (550=F), both coatings were still in a serviceable condition with

only light transfer of the dry film to the journal occurring. (See Figure

V.l).

Test No. 2 consisted of CdO and Graphite (HL-800) coating on the foil

and Def. Gun Cr3C 2 on journal at 540°C (1000°F). After 500 start-stops at

room temperature, the foil and journal were virtually unchanged. After

I000 start-stops, the journal was in serviceable condition, but the coating

on the foil under the loaded region was worn through (See Appendix E for

photographs of worn surfaces). It was apparent that 540°C (1000=F) was too

high a temperature for the Graphite in the coating due to oxidation. The

next test of this material combination (Test #9) was run at 370°C (700°F).

At the end of the 2000 start-stop cycle sequence, the bearing and journal

coatings were in serviceable condition with a light smooth polish of the

foil coating mixture deposited on the journal (see Figure V.2). Even if

the foil developed a bare spot, the light transfer coating deposited

on the journal would provide adequate lubrication. It was judged that this

combination would have performed through many more cycles. Talysurf traces

of the journal before and after test are shown in Figure V.3. Visicorder

traces of the test after 2000 start-stop are shown in Figure V.4.

In the next two tests (Nos. 3 and 4), plasma sprayed Tribaloy 800 was run

against sputtered Titanium Carbide and Kaman DES coatings on the foil.
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No. Comb£niclon =oa_Ings

TABLE V.l (toni'd)

RESULTS OF TESTED COATING COMBINATIONS

Partial Arc Bearln_s

Load = 14 kPa (2 psi) based on bearing projected area

_ Srea_'uay Fr_ct_on CoeffA¢len¢ I .....
•-._ • ur xace _o u_ru_ela

Teec Rmeulee
TemP -II AC 500 _.000 I 1500 I 2000

Scare cycle _ycle cycle i c)'tle I _eforl i At:it

i
6_0"cj$ .25 .31 ._7

F

D .43 .63 .J2

I

650"C $

D

5-0"= Ii S i .:_ .39

I D .7S .37

I 4

l

iS** 2 Sputtered
TiC vs

K.maa DES

)

_S_ i _o_e _nc_e_ed

i _elilmad _is.
Ples=.a

! S_ravQa

_ _s_m_d _s_

?_s_

i $_r_e_

I _$_
?$_

.29 ._[ .33

.69 .61 .54 l

I

,55 i ,_2

_.13 i _.,34

I

1
i - _c_c_c ic RT

2 - 3_mic ac Tee: TemVera:ure

I

)

'..0_

i

" Test CTcle Sequence - 500 _T. _OG ._T. repelced

*e_esc CTcle Sequence - 5,30 _T, _00 _T, :eoeaced

0.33 0.Jl

(13) C20)

0.53 0._9

(2_) (25)

500 cyc. ic _ - Journal _nd

cwo ec_ec_hee an4 |ome bite

m_¢ll on _oLl. 500 _7¢. ac

RT - _out_al had ml=y fine
scratchel, £oii down _O bare

Loose powder of :Gman DES o_

bU_pl. ._ated - _eu¢ceeeful.

500 c7c. ac _T - Journal hat

_ny flaw scratches and

;o_£ehe_, lois _ _o_r_l
dia_mcer 0._ _£1. Fo£1 hu

i _oc of scale, _rooab_7

:Oi_i_g craT_fe_ed frO_

Journal. _00 :yc. at _T -

Journal more polished, _oil

IOOk_ shi81@r wi=h _ess

scale. .%acid - unsuc=eslful.

500 cyc, lc _._ - Jou_..IL end

_o_l poi_she¢ slightly, some

(5 :o 13) s_ar_n i of coating on f=tl.

_ouen stopping. }00 =yc. i:

• T and 500 sc _ - s_hc

build u? o_ u_ev_ll _a loll,

jou_al has sou s¢_e_¢hie,

500 =7c. ac RT ° =one_deribie

polish_a_ _a _o£i end Journal

all over. Rough |:opp_ng.

R_ced - successful.
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After a few cycles at room temperature, the tests were stopped in each

case due to high dynamic breakaway torque readings, and the specimens

were examined. Journals were grooved and foil coatings worn through in

several locations under the loads (photographs of worn surfaces are in-

cluded in Appendix E).

Since both foil coatings tested with the Tribaloy 800 journal coating caused

the journal surface to groove, it was decided to repeat one of the foil

coatings against a Cr3C 2 journal surface. Kaman DES coating for the foil was

selected (Test No. 6). After 10 cycles at room temperature, the dynamic

torque had increased and the test was stopped. The foil coating was again

worn through under the load region, but there appeared to be no damage to

the journal surface (for photographs see Appendix E). It was concluded at

that time that the Linde Cr3C 2 was a better journal surface than Tribaloy

800 under these test conditions.

A new dry film lubricant, Hi-T-Lube (a proprietary coating of General

Magnaplate Corporation, Linden, New Jersey, believed to be based on MoS 2

and recommended for 540°C operation) was put on the foil. The coating

cracked slightly during bending of the foil. The bearing with this coating

was operated against Linde Cr3C 2 journal (Test No. 5). The coating was worn

under the loaded region after i000 cycles (for photographs see Appendix E).

None of the combinations in tests numbered 7, 8, and I0 survived the room

temperature cycles.

In the test set-up, the shaft was rigidly mounted and the bearing was free

to float and move axially along the shaft approximately 1.3 mm (0.050 in.).

In machinery application, the bearing is usually ridigly mounted and

the axial motion of the shaft is restricted by a thrust bearing. It was

felt that this axial motion of the bearing in our tests might fatigue the

interface particles. Since the axial motion does not exist in real appli-

cation; after the eighth test it was restricted to about 130-250 _m (5-10 mils)

of motion.
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It wasanticipated that the hard coatings would behavebetter at high temper-
ature for the following reason: preoxidation of the coating combinations

provides a thin protective oxide layer; manyceramic combinationscan inter-
act at higher temperaturesto form eutectic compoundswhich behaveas low
shear strength solid films. In addition, continuous exposureof the bearing
surfaces to oxygenat high temperaturesduring testing mayreplenish the

oxide film (reactive replenishmentconcept).

Thebearing loading under sliding contact is localized and, as a result, the
thin coatings could be damaged.A reactive replenishmentprocess could re-

form the coating by surface oxidation and save it from destruction during the
run-in period.

After Test No. i0, the hot cycles were run first in order to encouragerapid
initial oxidation, and the test cycle waschangedto the following:

• 500 cycles at maximumtest temperature; 16 secondson and 4 seconds
off.

• 500 cycles at roomtemperature; 4 secondson and 16 secondsoff.

• Repeatthe sequence.

TheKamanDEScoating on journal and foil (Test No. ii) successfully completed
i000 cycles at 540°C(1000°F) and i000 cycles at roomtemperature. Since
bearing surfaces after 2000start-stop cycles were in serviceable condition,
they were tested for an additional i000 cycles at 650=C(1200=F)and i000 cy-
cles at roomtemperature. Foils and journals were polished in the first i000
cycles. During the last 3000cycles, there waspractically no changein their
surface appearances(for photographsof surfaces, see Figure V.5). In the
first I000 cycles, somewear debris wasprobably collected at the interface
since dynamicfriction traces showeda significant amountof oscillations even
whenlift-off had occurred. Theoscillations almost disappearedas the testing
continued. It is to be noted that, in an actual bearing application, the
bearings are continually flushed with high pressure air which should remove
almost instantaneously anywear debris being formed. TheTalysurf traces of
the journal before and after test are shownin Figure V.6.
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KAMAN DES ON FOIL
AFTER I000 CYCLES
AT 540°C AND I000
CYCLES AT RT

KAMAN DES ON JOURNAL
AFTER I000 CYCLES
AT 5400C AND I000
CYCLES AT RT

IOX

KAMAN DES ON FOIL
AFTER I000 CYCLES AT

540'=C, I000 CYCLES
AT 650"C AND 2000
CYCLES AT RT

IOX

KAMAN DES ON JOURNAL
AFTER I000 CYCLES AT
540oc, I000 CYCLES AT
650=C AND 2000 CYCLES
AT RT

Fig. V.5 Photographs of Surfaces After Test (Test No. ii)
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After successful testing of Kaman DES versus Kaman DES, tests were

conducted for maximum of 2000 start-stop cycles on sputtered Cr20 3 versus

itself; Kaman DES versus sputtered Cr203; and sputtered TiC versus sputtered

Cr20 3 (Tests 12 through 14). In all three tests, coatings came off and

the surfaces became rough (for photograph of the surfaces see Appendix E).

The next test (numbered 15) consisted of HL-800 on the foil and sputtered

Cr20 3 on the journal and was conducted at a maximum test temperature of

370°C (700°F). After completion of the test, the journal had some fine

scratches and the foil surface was polished at a position corresponding to

four support foil bumps (see Figure V.7). The coating was rated acceptable.

However, the combination 8 in Test 9 is preferred over combination 13 in

Test 15. The next three tests (16 through 18) consisting of coating com-

binations sputtered Cr20 3 versus Trlbaloy 800; sputtered Si3N 4 versus

Tribaloy 800; and sputtered TiC versus Kaman DES, did not pass through the

complete test.

H. Sliney at NASA-Lewis modified the composition of the coating designated

NASA PS 106 and formulated a new coating, NASA PS 120, consisting of 60

percent Tribaloy 400, 20 percent silver, and 20 percent calcium fluoride.

This formulation substitutes the laves phase cobalt alloy Tribaloy 400 for

the nichrome that has been used in the NASA PS 106 coating. The coating

was applied on the journal and was unsuccessfully tested against uncoated

foil at 650°C (1200°F), Test No. 19. A lot of journal coating was smeared on

the foil surface. It was apparent that the Journal coating became soft at 650°C

(1200°F). It was felt that the coating combination might perform well at

540°C (1000°F). The next test was repeated at 540°C (1000°F), Test No. 20.

After the 2000-cycle test sequence, the journal had some fine scratches

and some of the journal coating had transferred and lightly smeared onto

the foil (see Figure V.8). Talysurf traces of the journal before and after

test are shown in Figure V.9. A Visicorder trace during the test after

i000 cycles is shown in Figure V.10. The coating combination was rated

successful, but it is felt, however, that more work will be needed on the

coating to improve its hardness and reduce the porosity.
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One of the coatings scheduled to be tested in start-stop tests, chrome di

boride (Plasma sprayed), coating on journal could not be ground. The coating

was very soft and porous. The coating was repeated on a second batch of

journals and coating again was found to be soft. No other vendor especially

experienced in CrB 2 could be located. Consequently, test combinations i, 9,

and 18 in Table 111.5 were not tested.

In reviewing the partial arc testing, it was evident that none of the sputtered

coatings performed well. It was believed that the cause of the difficulties

might be two-fold: the coatings may be too thin and the bonds may not be

good enough. A metallurgical examination of a sputtered coating at this stage

was considered necessary to gain an understanding of the bonding mechanism.

A Si3N 4 coated foil was rolled and examined under scanning electron micro-

scope and no cracks were found (Figure V.II). A Si3N 4 coated foil was sec-

tioned prior to any testing and examined under SEM, and X-REDA analysis was

also carried out. Figure V.12 shows the line scan and X-ray image of Si on

the sectioned foil. It was found that the silicon nitride coating was well

bonded and of the intended proper thickness (5000°A).

Despite this, the sputtered coatings could be easily polished off by an emery

paper. It appeared that although silicon nitride coating seemed to be well

bonded in the as-sputtered condition, it demonstrated a poorer bond during

sliding test. Some further work on the improvement of the bond of the

sputtered coatings during sliding should be carried out.

PARTIAL ARC BEARING TEST RESULTS AT 35 kPa (5 psi) LOADING

The most promising candidate Kaman DES versus Kaman DES, which was shown to

have the capability to operate up to 650°C (1200°F), was tested at 35 kPa

(5 psi) loading. The results of the combination tested are reviewed in Table

V.2. After completion of this test the journal looked virtually unchanged

and the foil had some microscopic patches of bare metal showing which were

very shiny and smooth (Figure V.13).
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5X

KAMAN DES ON FOIL AFTER
500 CYCLES AT 650°C
AND 500 CYCLES AT RT

5X

KAMAN DES ON FOIL AFTER
I000 CYCLES AT 650eC
AND I000 CYCLES AT RT

5X

KAMAN DES ON JOURNAL
AFTER I000 CYCLES AT
650°C AND I000 CYCLES
AT RT

Fig. V.13 Photographs of Surfaces After Test (Test No. 21)
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Coating

Combination

None

AssiBned

Foil and

Journal

Coatings

K_man DES 1vs.

Kaman DES

TABLE V. 2

RESULTS OF TESTED COATING COMBINATIONS

Partial Arc Bearln_s

Load = 35 kPa (5 psi) based on bearing projected area

] Breakaway Friction Coeffi¢lenC _ _ n _ __.

I ] j_urzace r,Ou_*_ncm m

,'tax. After _ fter AfEer After of Journal

Test I At 500 _00 1500 2000 _m (U An.) ,

Te.p.! Start I cycleJ ,'cle cycle cycle t Before l After

eso'c sI .n .32 .51 .33 ._8 0.33 0.36

"J r I (3.3) (1_,)

i_" .2s .',z ,z .,z j 5z

i

""Test eyrie sequence - 500 HT, 500 RT and repeated.

- _caclc a_ RT

- Dynamic at _es_ _emperature

Resul_s

500 cyc. ac HT-Jo_rnal and

loll lishcly polished, some

brown powder on foil. 500

cy¢. aC RT-Journel has _hree

fine scratches and some bare

metal ehowlnB on foil. 500

cy¢ aC HT and 500 cyc. aC

RT-very fine scratches on

journal filled with loose

powder. Foll has some bare

metal wi_h microscopic

patches and shiny appearance.

Raced-successful.
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A metallurgical examination was conducted to determine the composition and

condition of the shiny, heavily loaded zone. Reflection electron diffraction

was performed. It yielded two different patterns. One of the patterns was

identified as NiO. The second pattern was harder to interpret and was ten-

tatively identified as elemental chromlum (for diffractograms, see Figure

V.14 (b) and (c)).

The sample was then examined in the Scanning Electron Microscope (SEM)

equipped with an X-ray energy dispersive analyzer. The SEM photographs

in Figures V.14 and V.15 were taken in the back-scattered electron image

mode. The yield of back-scattered electrons from a sample increases with

increasing atomic number. Therefore, the lighter colored zones seen in

Figures V.14 (a) must be of higher average atomic number than the darker

zones. X-ray analysis bears this out as it shows the lighter colored areas

to be rich in nickel while the darker colored areas are richer in chromium

(Figures V.14c and V.14b, respectively). The rough, granular appearance of.

the chromium rich area resembles that of =he less worn, coated area seen in

Figure V.15. The nickel rich areas are likely to be the Inconel substrate

showing through where the coating has worn away.

u

am

Figure V.15 provides a comparison of the shiny, heavily worn and dull,

lightly worn areas.

It was concluded from the analysis that the patches of the remaining coating

found on the heavily loaded area are rich in chromium and the worn surface is

NiO which resulted from Inconel surface oxidation during testing. The structure

of the patches almost gives the impression that they coincide with the grain

boundaries. It is hypothesized that, during the coating process of Kaman

DES, first the chromium from the slurry is bonded to grain boundaries, and

the chromium deposited later is oxidized with liberated oxygen available in

the slurry and, as a result, Cr20 3 is deposited on the surface. As indicated

earlier, the bulk of Kaman DES coating is essentially Cr20 3. After testing,

the later deposited Cr20 3 is all worn away and the initially deposited

chromium is still present on the surface. This may mean that the initially

|
J
t
D

)

)
m
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(o) BACK SCATTERED ELECTRON IMAGE

Fig.

X-750, Heavily Worn Area

(b) Cr K. X-RAY IMAGE (c) Ni Ke X-RAY IMAGE

V. 14 SEM Micrographs and Diffractographs of Kaman DES Coated Inconel

(Test No. 21)
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(o) HEAVILY WORN AREA (b) HEAVILY WORN AREA

(c) LIGHTLY WORN, COATED AREA

Fig. V. 15

!

8O

(d) LIGHTLY WORN, COATED AREA

SEM Micrographs of Kaman DES Coated Inconel X-750 (Test No. 21)
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deposited chromium (inter-metallic layer) has a really good bond and this

may be the key to the overall good bond and, as a result, better wear llfe of

Kaman DES coating as compared to sputtered Cr20 3.

START-STOP TESTS OF COMPLETE BEARINGS

A complete foil bearing 38 mm dia x 38 mm wide (1½" dia x 1½" wide), tested

with a Kaman DES coating on journal and foil, was conducted at 14 kPa (2 psi)

loading based on bearing projected area. The results are reported in Table V.3.

There was a considerable amount of loose wear debris formation at the interface

which apparently could not easily escape, and, as a result, it damaged the

surface. The test was discontinued after I000 cycles consisting of 500

cycles at 650°C (1200°F) and 500 cycles at room temperature because there

were several bands of bare metal on the journal. The foil was polished over

all bumps and several bands of polished marks were running across the width

of the foil (see Figure V.16).

A repeat test should be conducted with a complete bearing before any conclu-

sions can be drawn. The wear may be the result of poor coating adhesion of

this batch or even bearing foil irregularities.
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No.

27.,

Foll and

Coatin$ Journal

Combination Coat£ngs

_;ona Kaman 0_'$

AsS t_ed vs.

Kam,an DES

TABLE V. 3

RESULTS OF TESTED COATING COMBINATION

Full Width Complete Bearln_s

Load = 14 kPa (2 ,sl) based on bearing projected area

Breakaway F_Ictlon Coe_Iclent I
ISucCacs Ro ugilness

_lax. A_; After IA_l:er AE_er A_er oE Journal
Test. 500 1.000 _.500 2000 um (u in.)

Tamp. Staff: cycle cycle cycle c)'cle 3e[oce I AE_e=""I

650"C S 1 l..O 0.9 0.90 .... 0.28 0.:.6

(ZJ.) (_8)

D 2 1.3 .53 1.._8

t I

I '
*Test :ycle sequence - 500 HT, 500 RT and. repeated.

._ * Sca_ic ac _,T

2 - Dynamxc ac css¢ cemperacure

Results

500 =yc. a¢ HT - Fine

scrs=¢nes on Journal, _oii

polished on all bumps.

Several bands o_ polish

marks r_nning circumference

of _oi;. _00 cy:, ac _T -

Siverl_ bands o( bare metal

on journa_ and _oi!. Raced -

_nsuccess_.
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KAMAN DES ON FOIL

KAMAN DES ON JOURNAL

Fig. V.16 Photographs of Surfaces After 500

Cycles at 650 ° C 500 Cycles at RT (Test No. 22)
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Vl. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The most promlsingcoating combinations from the program aimed at developing

material coatings to withstand start-stop cycles in a 540 ° - 650=C (i000 ° -

1200°F) environment for an air lubricated compliant journal bearing, are

listed below:

Foil Coating

Hi,-800 TM

(CdO and Graphite)

8-10 um thick

Journal Coating

Maximum

Temp

°C (°F)

Test

Def. Gun and Ground 370*

Ni-Cr bonded Cr3C 2 (700)
60-90 _m thick

Uncoated and Plasma Sprayed 540

Heat-treated NASA PS 120 with (I000)

Ni-Aluminide undercoat

140-165 _m thick

Kaman DES Kaman DES 650

(Proprietary Cr203) 8-13 _m thick (1200)
1.3 - 2.5 um thick

The combinations listed above have completed a total 2000 start-stop cycles

each, consisting of i000 cycles at maximum test temperature and i000 cycles

at room temperature at a load of 14 kPa (2 psi) in partial arc bearing tests.

Kaman DES - Kaman DES has also completed the 2000 start-stop cycles at a

load of 35 kPa (5 psi) in partial arc bearing tests.

It is believed that the intermetallic layer of chromium in the Kaman DES

coating may be responsible for the good coating bond and, as a result, pro-

vide better wear life.

*It can probably be used up to 400°-430QC
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It is believed that the hard coatings behavebetter if they are run at high
temperaturefirst for the following reasons: Preoxidation of the coating
combinationsprovides a thin protective oxide layer and manyceramic
combinationscan interact at higher temperaturesto form eutectic compounds
which behaveas low shear strength solid films; and also oxidation of the
bearing surfaces at high temperaturesduring testing replenishes the oxide
film continuously (reactive replenishment). This maybe especially important
during the run-in period.

TheKamanDES/KamanDEScoating systemin a full bearing test did not do very
well. It is tentatively concludedthat the wear debris collected at the in-
terface could not escapeand did _ost of the damage. It is also possible
that the coating bondmight not havebeenadequate.

Evenwell bondedcoatings will wear andas a result there is loose debris
collected at the interface. In the caseof hard coatings (e.g. Cr203 and

Cr3C2 etc.), it is important that the formation of the wear particles be
minimized and that whateverdebris is formedshould escapefrom the bearing
interface; otherwise, it could be abrasive. Journal coatings are put on by
plasmaspraying and are relatively thick andwell bonded,and usually show
little wear. The foil coating, due to the foil flexibility, takes a lot of

abuse, especially during starting. In order to get adequatecoating retention
on a thin foil which goesthrough flexing during operation, the coating should
be very thin. Thesuccessful hard coating KamanDESis only 1.3 - 2.5 _m
(50-100_ in.) thick and hasworkedvery well. In someprior work, thicker
coatings of this compositionhave presentedproblems. It is concludedthat
the thin coatings of hard materials (less than 2.5 _m(i00 _ in.)) are ideal
for the foils.

RECOMMENDATIONS FOR FUTURF RESEARCH

In these studies a baseline has been established at different operating

temperature levels with three coating combinations. It is recommended that

future work have the following major objectives:

• Apply the major effort to continuing the material and process

development on the three most promising combinations.
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• Maintain a parallel effort on both hard and soft coatings because
of potential problemswith loose abrasive particles associated with
hard coatings.

• Introduce newcandidate combinationsfor advancedautomotive gas
turbines.

Themost promising coating systemsidentified should be subjected to a care-
ful review to determinewhat variables might be significant in affecting and
improving long life performance. Quality control of coating processesand
methodsshould be established.

Formation of the wear debris in hard coatings seemsto be a problemas
the wear particles maybe abrasive. Techniquesshould be developed to
removethe particles from the bearing interface. Forcedair maybe
introduced to removethe particles which is consistent with the real
application.

Becauseof the abovepossible difficulties with hard surface coatings, it
is believed that a parallel emphasisshould be maintained on the softer
coating. Pb0.Si02coating acts as a goodlubricant in 480= - 650°C
(900_1200°F)range. Since interface temperaturesmaybe quite high even
in roomtemperatureambient due to rubbing before lift off, the coating
mayfunction reasonably well over the entire temperaturerange. Additives
such as silver should be explored to broadenthe temperaturerange.

A technique should be developedto improvethe bondand ductility of the
coatings put on by sputtering.

Both the newcobalt basealloy coating LI03, and Zirconates, which success-
fully completedoven screening test should be further evaluated.

The oxide treatment of cementedcarbide tools has improvedtool life.
Oxide treatment changesTiC base to Ti-C-0 (oxycarbide of Titanium).
Oxycarbideshave lower free energy than carbide and, therefore, are more
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stable. It is thought that the oxycarbide coatings on the bearing and
journal surfaces mayprovide goodfriction andwear properties. Ox_ycarbide
powdersfor plasmaspraying technique maybe madeby coating TiC particles
with Ti0 by a Metcotechnique. A sputtering target can also be madefrom
the coated particles. During sputtering, a chemical reaction probably
will take place and sputtered coating maybe madeof oxycarbides.

A list of recommendedcandidates for future work is given in Table VI.I.
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STRESSES IN THE TOP FOIL OF THE FOIL BEARING DUE TO DYNAMIC LOADING

In a hydrodynamic resilient bearing construction, the bearing is comprised

of a smooth top foil and a 'bump" or convoluted foil. The bump foil gives

distributed elastic support to the top foll on which the bearing load is

applied. For calculation purposes, as a first approximation, the top foil

is considered to be a flat rectangular beam pinned at one end, free at other

and simply supported in between (Figure A.I). Although the bumps provide

elastic support yet there are assumed to be rigid for simplicity. The

assumption will give a conservative estimate of the bending stress level

in the top foil.

Clapeyron's three moment equation was used for solving this continuous beam

problem, (see Reference 15). Figure A.2 shows the free body diagrams of

two beam segments. From the continuous beam theory it follows:

MA + 4 _ + M C = - wE 2/2 (A.I)

M. = M = 0 (A.2)
l n

Where,

M = moment

= weight per unit length

= distance between the supports

If n is an even number, due to symmetry

M(m+l ) = M(n_m )

If n is an odd number, due to symmetry

M(m ) = M(n_m+l )

(A. 3)

(A.4)
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The moment in any segment can be calculated using Equations (A.I) to (A.4).

Then the stress, _ can be calculated by the following relation (Reference 15):

M
-- (A.5)

(hi 2/6)

Where,

o = stress

h = width of the foil

t = thickness of the foll

ORIGINAL PAGE IS

0_' POOR QUALITY

Assuming that:

n = 9, Z = 4.5 mm (0.18 in.), t = 102 um (0.004), and load =

210 k Pa (30 psi)

From Equations (A.I) and (A.4) it is shown that:

-15_/__z2
Mmax 134

-45 _2

and _max = 6--_

= 281 M Pa (40,800 psi)
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APPENDIX B

FLASH INTERFACE TEMPERATURE CALCULATIONS

The flash (instantaneous) temperature rise at the interface depends on the

mechanical, thermal, topographical, and the tribological properties of the

mating surfaces and sliding conditions. From Bhushan and Cook [16, 17], the

temperature rise for a square slider (2Z x 2Z) rubbing on a semi-infinite

solid in low speed sliding pertinent to this problem is given as:

= fV [0.44 H d + Z_ ] (B.I)

kl+ k 2 max

If L (Peclet Numer) - --

v_
max

K
<i

where_

= average flash temperature, °C(°F)

f = coefficient of friction

V = sliding speed, mm/s (in/s)

kl,k 2 = thermal conductivity, W/(m.K) (ib/(sec°F)) of slidin_ members

K = thermal diffusivity, mm 2/s (in.2/sec)

H

max

= bulk hardness of the softer material, Pa (psi)

= mean contact stress, Pa (psi)

= maximum value of junction diameter during the life of an asperity

contact, u=n(in)

= half length of square slider, mm(in)

From experience it is found that d for many metal to metal combination
max

varies from 13 '_m (5 x 10 .4 in.) to 25 I_m (10 -3 in.).

To obtain an idea of the order of magnitude of the interface temperature,

the case of A286 rubbing on Inconel X-750 is considered. Relevant thermal,

mechanical and topographical properties needed are:

kA286 = 14.73 W/(m.K) (1.84 ib/(Sec. °F))

%

!

l
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klnconeI = 12.09 W/(m.K) (1.51 ib/(sec. °F))

HA286 - 6.38 GPa(9.257 x 105psi)

HlnconeI - 3.48 GPa(4.98 x 105 psi)

= 6.3 mm(.25 in.)

dmax = 13 _m(5 x 10-4 in)

ORIGINAL PAGE IS

OF POOR QUALIT r

Substituting these values in Equation B.I gives:

= fV [0.7 + 0.0002_]

where V is in mm/s and _ is in k Pa

= 0.7 fV since in this case o < 210 kPa.

Lift off speed in many application is 3000 to 6000 rpm depending on loading.

Typically for 14 kPa (2 psi), the lift off speed is roughly 4000 rpm. For

38 mm (1.5 in) diameter bearing, the surface speed becomes

V= 7980 mm/s (314 in./sec)

At higher speeds (close to lift off speed), it is seen that the interface

temperatures are pretty high and as a result there may be formation of

protective oxide layer at the interface which may reduce the friction

considerably. For demonstration purposes, it is assumed that

f= 0.05

then

= 0.7 x 0.05 x 7980

= 279°C (534°F)
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APPENDIX C

PREPARATION OF HL-800 COATING

Introduction

Graphite was one of the first widely used inorganic solid lubricant. The

slippery texture of the graphite is believed to be due to layer lattice type

of crystal structure (a hexagonal crystal structure which shears readily in

a direction parallel to the basal planes of the crystals). Adsorbed water

yapor and oxygen are necessary for graphite in order to achieve desired low

friction and wear.

)

[
)
!
)

!
)

The effectiveness of the graphite as a lubricant (reduction of its shear

strength) is associated with the formation of adherent films on the lu-

bricating surfaces. The presence of some oxides or salt may improve the

adherence of the graphite films (References 5 and 8). Several reasons have

been given for the improved adherence. Some researchers believe that it

may be due to the formation of interstitial or intercalation compound by

reaction of these materials with graphite. It is also suggested that such

compound s would serve as bonding media for the graphite. Friction tests

in the temperature range of room temperature to 540°C (1000°F) of powder of

graphite and graphite mixed several soft metallic salts and oxides were

conducted by Peterson and Johnson [8]. They found that the coefficient of

friction of graphite in air is quite low at room temperature, but increases

at temperatures above about 95°C (200°F). The friction coefficient again drops

at 425=C (800°F) and graphite acts as an effective lubricant up to 540°C (1000=F).

See Figure C.I. Several metallic compounds, Pb0, CdO, sodium sulphate, and

cadmium sulphate were mixed with graphite. It was concluded that cadmium

oxide and graphite mixture lubricated most effectively in the entire tem-

perature range up to 540=C (1000°F). Figure C.2 shows the friction data of

2/3 Cd0 and 1/3 graphite mixture. Graphite used in their test was a high

purity electric-furnace synthetic graphite. Synthetic graphite was selected

due to its higher temperature capability than natural graphite.

In the experiments of Peterson and Johnson, the graphite and cadmium oxide

powder was added at the rubbing interface. The authors' knowledge, to date

no coating of this mixture has been developed. It was believed that the
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coating would reduce the oxidation of graphite comparedto loose graphite
powderat high temperatures (it has been later confirmed).

Preparation of the Coatin_

Past experience has shown that 3 parts graphite and I part cadmium oxide

provide good lubrlcity in the bearings. This proportion was selected for

our selection. Sodium sillicate has commonly been used as a binder in

putting solid lubricant coatings. Many wetting agents (e.g. NPX made by

Union Carbide) have been used to disperse the solution properly.

Graphite used was a 99.9 percent pure electric-furnace synthetic graphite

made by Joseph Dixon, Crucible Co. It was very fine powder with 95 percent

of the particle sizes finer than 325 mesh (95-325). Cadmium oxide was 99.9

percent pure (comn_rcially pure) material with 95 percent of the particle

sizes finer than 200 mesh. This powder was made by Materials Research Corp.

Sodium sillicate (water glass), made by Philadelphia Quartz, was 99 percent

pure with a composition of 8.9 percent Na20, 28.7 percent Si02 and balance

water. Wetting agent used was Absol 895 with a cloud point of 65°C (for its

effective use, the temperature of the solution should be 65°C).

Higher contents of sodium sillicate are not desirable as it is abrasive.

By trial and error it was found that about 30 percent by weight (water

content not included) of sodium sillicate gave adequate bond of the coating.

The mixture of Cd0 and graphite (1:3) was dissolved in distilled water. It

was ball milled for roughly 4 hours. Just before spraying, sodium sillicate

and one drop of Absol was added and it was stirred vigorously. The solution

was heated to about 65°C (150°F) before spraying. It was sprayed by an air

brush about 25 um (i mil) thick onto a carefully prepared substrate.

The sprayed coating was left at room temperature conditions for 30 minutes.

It was then baked in an oven at 65°C (150°F) for two hours and then at

150=C (300°F) for 8 hours. The coating was burnished 8 to i0 um (0.3 to

0.4 mil) thick.
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APPENDIX D

THE EXAMINATIONS OF TEST SAMPLES BEFORE AND AFTER STATIC OVEN SCREENING

D-I VISUAL INSPECTION

Table D.I Examination of Coated A286 Coupons

Table D.2 Examination of Coated Inconel X-750 Coupons
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D-2 DISCUSSION OF METALLURGICAL EXAMINATIONS OF COATED A286 AND INCONEL

X-750 COUPONS

Scannin$ Electron Microscope and EDAX Studies

Samples selected for scanning electron microscope (SEM) and X-Rays Energy

Dispersive Analyzer (X-REDA) studies were:

TiC sputtered coating on foil

Si3N 4 sputtered coating on foil

HL-800 fused coating on foil

Cr20 3 sputtered coating on foil

Kaman DES coating on foil

Trlbaloy 800 plasma sprayed coating on Journal

Heat treated and uncoated Inconel X-750 coupon.

Coupons of the above coatings were examined as received and after oven test.

Figure D.I shows the surface morphology of a heat heated Inconel X-750 coupon

(uncoated) for later comparisons. Figure D.2 shows the surface appearance of

sputtered TiC coating (as received). In comparing Figure D.2 with Figure

D.I, it was believed that the coating followed the topography of the substrate.

The coating was believed to be dense and did not have any cracks. There were

many particles on the surface. Examination of the surface showed that there

were no foreign particles present on the coating. The elemental analysis

(X-REDA) of the particles and rest of the coating showed that all of the

coating is made of Titanium carbide.

Figure D.3 shows the surface appearance of the sputtered TiC coating after

exposed to high temperature. The scratch in Figure D.3(a) was probably done

in handling the coupon. The particle density on this coupon was higher and their

size was statistically larger than before oven coupon. It was again believed

that the particles were an integral part of the coating. X-REDA analysis of

the particles and rest of the coating showed that the coating was composed of

Titanium carbide and the substrate underneath has elements expected in Inconel

(primary elements Ni, Cr, Fe and Ti). The analysis of the particles and the

substrate underneath showed that they had elements such as AI, Si, S, Fe, P,

and very little Ti and Cr. Some particles had considerable Ni and others

had very little. From this observation, it was postulated that microspots

ii0
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(a) (b)

Fig. D.I Typical SEM Micrographs and Diffractogram of Heat Treated

Inconel X-750

IO_m

(a) (b)

Fig. D.2 Typical SEM Micrographs of Sputtered TiC on Inconel Base

(as received)
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Fig. D.3 Typical SEM Micrograph of Sputtered TiC
(as received) with a Man Made Scratch
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(a) (b)

Fig. D.4 Typical SEM Micrographs and Diffractogram of Sputtered TiC

on Inconel Base (After Oven)
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of the substrate with inclusions and little Cr content oxidized and pushed

the coating away. It is believed tentatively that TiC coating doesn't

provide enough protection to avoid the local oxidation.

Scratch test was performed on the TiC coating after oven exposure to evaluate

its ductility. In this test a scratch was made with a scriber and it was

examined for any branch cracking. From examination of the scratch (in

Figure D.4) it was apparent that no branch cracks were formed which suggests

that the coating was ductile. At this time, it was felt that scratching

may push the debris onto the surface and may lead to misinterpretation of

the surface texture. Therefore, no more scratches were made on other coatings.

Figure D.5 shows the surface appearance of the Si3N 4 sputtered coating. The

coating appeared to be dense and had no cracks. The valleys on the surface

came from the substrate topography (Figure D.I). Portion of Si3N 4 coating

was oxidized during oven test. Figure D.6 shows non-oxidized and oxidized

area of the coating after oven test. The coating after oven test looked

about the same as before exposure. Oxide layer on the coating after oven

test formed no shadow in tilting the specimen with respect to light in SEM

study which implies that it had practically no thickness. The layer could

be easily scrapped off and Si3N 4 color appeared underneath. X-REDA analysis

confirmed that the coating was composed of Si compounds.

|
!

|
q

|

Figure D. 7 shows the surface appearance of Cr203, sputtered coating on

Inconel base. Comparisons, with uncoated Inconel X750 surface (Figure D.I),

show that the coating follows the surface texture. The photograph taken at

a magnification of i0,000 X, to study the surface morphology (Figure D. Tb),

shows that the coating has nodular growth. Nodules grow within colu=mar

structure and project to the surface with domes. The structure looks like

peelings of an orange or a cauliflower. Similar results have been reported

by Spalvins [18,19]. Spalvins postulated that the nodules grow from the

nucleation sites present on the substrate. He concluded that the nodules

have undesirable effects on mechanical properties; cracks are initiated at

the nodules when the coating is stressed by mechanical forces. It is felt

that evidence of such growth is to be expected at higher magnifications

(XI0,000) although further tests should be carried out to establish if the

113



Fig. D.5 SEMMicrograph of Sputtered Si3N 4 on Inconel

Base (as received)

(a) (b)

Fig. D.6 SEMMicrographs and Diffractogram of Sputtered Si3N 4 on

Inconel Base (after oven)
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(a) (b)

Fig. D.7 Typical SEM Micrographs of Sputtered Cr203 on Inconel
Base (as received)

(a) (b)

Fig. D.8 Typical SEMMicrographs of Sputtered Cr203 on Inconel
Base (after oven)
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nodular growth is indeed undesirable. X-REDA analysis of the coating

reveals that the surface has primarily Ni, Cr, Fe, Ti and trace amounts

of W, C_, S and A_. Cr content is about two-third that of Ni. This shows

that the coating is made of Cr compound (Cr203), which is what it should

be.

Figure D.8 shows the surface appearance of Cr203 coating after it has

been exposed to high temperature. The coating looked similar to "as

sputtered" (before oven) coating except it had many small particles. The

X-REDA of the coating showed that chromium was of _omewhat higher intensity

after oven treatment as might be expected. (Chrome oxide concentrates on

Inconel X750 surfaces during air oxidation). The other constituents and

their quantities are similar. The composition of the fine particles was

the same as that of the rest of the coating (Figure D.9).

Figure D. II shows the surface appearance of Kaman DES chemically adherant

coating on the Inconel X750 base prior to oven testing. The coating looked

rougher and had lots of particles. X-REDA analysis showed that coating

had strong chromium peak and weak peaks of Ni and trace amounts of Fe and

Ti. The Cr peak is about 3 times that of Ni, which shows that the coating

is a compound of Cr (Cr203) and is quite thick since elemental analysis

did not pick-up the elements of substrate as much as in the case of sputtered

coatings. Figure D,12 shows the surface appearance of the Kaman DES coating

after oven exposure. The coating did not seem to have as many particles

but had more cavities. Possibly some of the particles came off and formed the

cavities. X-REDA analysis of the coating showed that chromium and nickel

peaks increased in intensity after heat treatment and additional weak titanium

and iron peaks appeared (Figure D.10). It is suspected that Ti, Fe and

enhanced Cr and Ni were all present as oxides and were caused by solid state

diffusion of these elements from the Inconel foil into the coating during the

oven tests.

Figure D.13 shows the surface appearance of the HL-800 coating. X-REDA

analysis showed that small particles were CdO coated with sillicate. Cd0

particles were quite randomly mixed with graphite and were bonded with sillicate.
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AS RECEIVED

Fig. D. 9

AFTER OVEN

EDAX Image of Cr203 (sputtered) O]_IGIN_ PAGE IS
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AS RECEIVED

Fig. D. i0

I
Ni Ti

Fe

AFTER OVEN

EDAX Image of Kaman DES
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(a) (b)

F_gliD.ll Typical SEM Micrographs of Kaman DES on Inconel Base

(as received)

50_m

(a) (b)

FiB. D.12 Typical SEM Micrographs of Kaman DES on Inconel Base

(after oven)

|
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(a) (b)

Fig. D.13 Typical SEM Micrographs of HL-800 on Inconel Base

(as received)

ORIGINAL PAGE IS

OF POOR QUALITY

Fig. D.14 Typical SEMMicrograph and Diffractogram of

HL-800 on Inconel Base (after oven)
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Figure D.14 shows the coating after oven test. Elemental analysis and

visual examination of the coating showed the composition of the coating

was the same as that of the coating before oven tests except that the

graphite content is less. The coating looked intact. CdO particles were

not as prominent. They may have reacted with other components in the

coating.

Figure D.15 shows the general appearance of Tribaloy 800 plasma sprayed coating

on journal (A286 base material). The coating is as sprayed but not ground.

There are many intergranular cracks on the surface (Figure D.15b). The cracks

may have been formed by cooling of the hot particles coming in contact of the

cooler substrate (typically 150°C) during plasma spraying. To establish if

these cracks were only on the surface or throughout the coating thickness,

the coating was ground and then examined for cracks (See Figure D.16). It

was found that the cracks were only on the surface and not through the coating.

Since the coating is ground before usage, they should present no problem. The

pits and void_ on the surface indicated that the coating was quite porous.

Figure D.17 shows the surface appearance of the "as sprayed" Tribaloy 800

coating after the oven test. No apparent cracks were observed in this

coating. It is believed that the cracks may be obscured by oxidation of the

surface during oven test.

Reflection Electron Diffraction and X-ray Diffraction Studies

The composition and properties of sputtered coatings depend on sputtering

parameters. Reflection electron diffraction analysis of some of the promising

coatings was carried out to evaluate their chemical composition. In case of

sputtered A£ 2 03, it was suspected that the vendor had not applied an adequate

thickness. The analysis was carried out to see if there was any AZ20 3 at

all on the surface. The samples examined had gone through oven test and they

were: TiC sputtered on foil, Si3N 4 sputtered on foil, HL-800 on foil after

oven, A£20 3 sputtered on foil before oven, Inconel base metal as a control.

The following specimens were analyzed with X-Ray Diffraction technique: Cr203

sputtered on foil and Kaman DES on foil. The ED examination of TiC revealed that

coating oxidized to Ti02 during oven test (for diffractogram, see Figure D.4a).

The diffraction patterns of Si3N 4 and Si02 are very close and it could not be

resolved if the coating was Si3N4, Si02 or both (for pattern, see Figure D.6a).
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(o) (b)

Fig. D.15 Typical SEM Micrographs of Plasma Sprayed Trlbaloy 800 on

A286 Base (as received) ORIGINAL PAGE IS

OF POOR QUALITY

(o) (b)

Fig. D.16 Typical SEM Micrographs of Plasma Sprayed Tribaloy 800 on

A286 Base (surface ground)
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(a) (b)

Fig. D.17 Typical SEMMicrographs of Tribaloy 800 (After Oven)
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The diffraction pattern of HL-800 coating (Figure D.14) showed that the

coating after the oven test changed to CdSi03 and Graphite.

No patterns at all could be obtained from A%20 3 coating before oven tests,

even though numerous runs were made on different pieces at various angles

and orientation. Only after roughening the surface by scratching it, could

a pattern be obtained of _Fe and Cr.. X-REDA analysis suggests that there

is slight amount of A£ compound on the surface. It is believed that there

was very little AA203 coating on the surface and it could not be picked up

by ED. There is very slight possibility, if any, that A_203 is present, and

its structure is amorphous so that patterns could not be obtained. Patterns

of an Inconel X-750 heat treated coupon (Figure D.Ib) suggest that the

surface is composed of spinel compound, Ni0.Fe20 3 which is formed during

heat treatment.

X-ray diffraction studies, of Inconel base coated with Cr20 3 (sputtered) and

Kaman DES, detected chromium oxide (Cr203) and nickel solid solution. Both

coatings before and after oven treatment were predominantly Cr20 3. The

nickel solid solution peaks were derived from the Inconel X-750 substrate.
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APPENDIX E

PHOTOGRAPHS OF BEARING SURFACES AFTER START/STOP TESTS

The Appendix includes the photographs (Figures E.I to E.15) of the journal

and foil surfaces after start/stop tests, not included in Chapter V.
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IOX IOX

HL-800 ON FOIL Cr3C 2 ON JOURNAL

Fig. E.I Photographs of Surfaces After 500 Cycles at 540 ° C and same at RT

IOX IOX

T i C ON FOIL TRIBALOY 800 ON JOURNAL

Fig. E.2 Photographs of Surfaces After 30 Cycles at RT (Test No. 3)

IOX IOX

KAMAN DES ON FOIL TRIBALOY 800 ON JOURNAL

Fig. E.3 Photographs of Surfaces After i0 Cycles at RT (Test No. 4)
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IOX IOX

Hi-T LUBE ON FOIL Cr3C 2 ON JOURNAL

Fig. E.4 Photographs of Surfaces After 500 Cycles at 540 ° C and same at RT

IOX IOX

KAMAN DES ON FOIL Cr3C z ON JOURNAL

Fig. E.5 Photographs of Surfaces After I0 Cycles at RT (Test No. 6)

IOX IOX

UNCOATED FOIL NASA PS IO6 ON JOURNAL

Fig. E.6 Photographs of Surfaces After 500 Cycles at 550 ° C and same at RT
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KAMAN

Fig. E.7

5X 5X

DES ON FOIL NASA PS IO6 ON JOURNAL

Photographs of Surfaces After I00 Cycles at RT (Test No. 8)

5X 5X

Cr203 ON FOIL KAMAN DES ON JOURNAL

Fig. E.8 Photographs of Surfaces After 500 Cycles at RT (Test No. 10)

5X 5X

Cr 203 ON FOIL Cr 203 (SP.) ON dOURNAL

Fig. E.9 Photographs of Surfaces After 500 Cycles at 650 ° C and same at RT

(Test No. 12)
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5X 5X

KAMAN DES ON FOIL Cr?.O 5 (SP.)ON JOURNAL

Fig. E.IO Photographs of Surfaces After 500 Cycles at 650 ° C and same at RT

(Test No. 13)

5X 5X

TiC ON FOIL CrzO 5(SP.) ON JOURNAL

Fig. E.ll Photographs of Surfaces After 500 Cycles at 650 ° C (Test No. 14)

5X IOX

CrzO 5ON FOIL TRIBALOY 800 ON JOURNAL

Fig. E.12 Photographs of Surfaces After 1000 Cycles at 650 ° C and 500 a¢ RT

(Test No. 16)
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5X 5X

Si3N 4 ON FOIL TRIBALOY 800 ON JOURNAL

Fig. E.13 Photographs of Surfaces After 500 Cycles at 650 ° C and same at RT

(Test No. 17)

5X 5X

TiC ON FOIL KAMAN DES ON JOURNAL

Fig. E.14 Photographs of Surfaces After 500 Cycles at 650 ° C and same at RT

(Test No. 18)

5X 5X

UNCOATED FOIL NASA PS 120 ON JOURNAL

Fig. E.15 Photographs of Surfaces After 500 Cycles at 650 ° C and same at RT

(Test No. 19)
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